Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
массообменные процессы.docx
Скачиваний:
11
Добавлен:
26.09.2019
Размер:
45.61 Кб
Скачать

1. Массообменные процессы

Процессы массообмена - процессы, в которых основную роль играет перенос вещества из одной фазы в другую. Движущая сила этих процессов - разность химических потенциалов. Как и в любых других процессах, движущая сила массообмена характеризует степень отклонения системы от состояния динамического равновесия. В пределах данной фазы вещество переносится от точки с большей к точке с меньшей концентрацией. Поэтому обычно в инженерных расчетах приближенно движущую силу выражают через разность концентраций, что значительно упрощает расчеты массообменных процессов.

Массообменные процессы широко используются в промышленности:

-для разделения жидких и газовых гомогенных смесей,

- для их концентрирования,

-для защиты окружающей природной среды (прежде всего для очистки сточных вод и отходящих газов).

Классификация и общая характеристика

Наибольшее распространение получили следующие массообменные процессы:

1. Абсорбция

2. Перегонка и ректификация

3. Экстракция (жидкостная)

4. Адсорбция

5. Ионный обмен

6. Сушка

7. Растворение и экстрагирование из твердых тел

8. Кристаллизация

9. Мембранные процессы

Во всех перечисленных выше процессах общим является переход вещества (или веществ) из одной фазы в другую.

Процесс перехода вещества (или нескольких веществ) из одной фазы в другую в направлении достижения равновесия называют массопередачей.

Перенос вещества внутри фазы - из фазы к границе раздела фаз или наоборот - от границы раздела в фазу - называют массоотдачей (по аналогии с процессом переноса теплоты внутри фазы - теплоотдачей).

Процессы массопередачи обычно обратимы. Причем направление перехода вещества определяется концентрациями вещества в фазах и условиями равновесия.

2. Уравнение массопередачи

Основным кинетическим уравнением массообменных процессов является уравнение массопередачи, которое основано на общих кинетических закономерностях химико-технологических процессов.

Скорость процесса [в кг/(м2 • с)] равна движущей силе Δ, деленной на сопротивление R:

dМ/dF = Δ/R (7.1)

где dМ - количество вещества, перешедшего из одной фазы в другую в единицу времени; dF - поверхность контакта фаз.

Обозначив 1/R = К, получим основное уравнение массопередачи

dМ =К ΔdF (7.2)

Коэффициент К -коэффициентом массопередачи (по аналогии с процессом теплопередачи) характеризует скорость процесса переноса вещества из одной фазы в другую.

Размерность коэффициента массопередачи:

[К]= [dМ/ΔdF]= [кг/с·Δ·м2] (7.3)

т. е. коэффициент массопередачи К показывает, какое количество распределяемого вещества переходит из фазы в фазу в единицу времени через единицу поверхности контакта фаз при движущей силе, равной единице. Размерность движущей силы Δ может быть различной, а от нее зависит и размерность К.

Обычно уравнение массопередачи применяют для определения поверхности F контакта фаз, а исходя из этой поверхности - размеров массообменных аппаратов.

F=М / (КΔ) (7.4)

Массообменные процессы подразделяют на:

массопередачу в системах со свободной границей раздела фаз (газ-жидкость, пар-жидкость, жидкость-жидкость),

массопередачу в системах с неподвижной поверхностью контакта фаз (системы газ - твердое тело, пар - твердое тело, жидкость - твердое тело),

массопередачу через полупроницаемые перегородки (мембраны).