Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Промывочные жидкости .Учебник..doc
Скачиваний:
51
Добавлен:
10.11.2019
Размер:
7.56 Mб
Скачать

10.5.2. Экспериментальные исследования.

Для определения состава и равновесной коагуляции эффективной промывочной жидкости для бурения неуплотненных глин на кафедре технологии и техники разведки месторождений полезных ископаемых Красноярской государственной академии цветных металлов и золота под руководством автора была проведена серия экспериментов.

В качестве образцов были использованы скатанные из черногорского глинопорошка шарики диаметром 50мм. Черногорская глина это кальциевый бентонит невысокого качества.

Исследуемые растворы готовились на миксере Воронеж.

Основными компонентами эффективных промывочных жидкостей для бурения неуплотненных глин с высокими крепящими свойствами, как отмечено выше, должны быть:

1) полимеры - ингибиторы диспергирования,

2) соли одновалентных металлов - ингибиторы гидратации глины,

3) соли поливалентных металлов или жидкое стекло –модификаторы глины.

Поэтому при экспериментальных исследованиях в первую очередь определяли влияние всех названных компонентов на их крепящие свойства и затем наиболее эффективные их комбинации.

Всего было приготовлено и испытано 42 раствора восьми групп:

I группа – растворы солей одновалентных и двухвалентных металлов с жидким стеклом (без полимеров) –кальциево – силикатные полисолевые растворы;

II группа – растворы полимеров и солей одновалентных металлов (без солей одновалентных металлов) – силикатно – кальциевые растворы;

III группа – растворы полимеров и солей одновалентных металлов без солей поливалентных металлов (соленасыщенные натрово – калиевые растворы);

IV группа – растворы полимеров и солей одновалентных металлов с жидким стеклом (силикатные полимерсолевые растворы );

V группа – растворы полимеров и солей одновалентных металлов с солями магния (магниевые полимерполисолевые растворы);

VI группа – растворы полимеров и солей одновалентных металлов с солями кальция (кальциевые полимерполисолевые растворы );

VII группа – растворы полимеров с солями одновалентных металлов и магния с жидким стеклом (силикатно – кальциевые полимерполисолевые растворы);

VIII группа – растворы полимеров с солями одновалентных, двухвалентных, трехвалентных металлов и жидким стеклом (кальциево-алюмо-силикатные полимерполисолевые растворы).

Образцы глины помещали в приготовленные растворы и выдерживали в их вплоть до разрушения. Перед помещением образцов в растворы и затем периодически через сутки на приборе Вика с конусом определяли их пластическую прочность в течении двух месяцев.

Рассмотрим наиболее показательные эксперименты.

Вначале готовили и определяли крепящие свойства I-ой группы – полисолевых растворов. В раствор вводили наиболее применяемые в практике бурения ингибиторы гидратации: соль одновалентных металлов KCl, соль двухвалентных металлов CaCl2 и жидкое стекло в концентрациях, рекомендуемых для приготовления ингибирующих растворов. Затем концентрацию солей KCl, CaCl2 несколько повышали (табл. 10.3).

Таблица 10.3

Влияние ингибирующих полисолевых растворов на прочность глины.

Состав, %

Время выдержки

образца до

разрушения,сут

Максимальная

пластическая прочность

глины, МПа

КCl

CaCl2

Na2SiO3, 9H2O

5

10

10

10

10

2

2

3

3

5

2

1

3

5

5

2

12

2

2

1

на 1е сутки ~5,

на 5е сутки ~27,

на 1е сутки ~6,

прочность не возросла

прочность не возросла

Результаты исследований показывают, что при рекомендованных концентрациях ингибиторов гидратация без полимеров в первые сутки вследствие снижения влажности глины ее прочность несколько повышалась, но на вторые сутки после повышения отрицательного заряда раствора (в растворе остались только анионы) и гидрофильной пленки жидкого стекла произошел обратный процесс - набухание, закончившийся разрушением образца.

С увеличением концентрации соли KCl до 10% и снижением концентрации жидкого стекла до 1% прочность глины возросла в течении 5 суток, так как влажность глины снижалась, а сшивание глинистых частиц постепенно возрастало. Но вследствие отсутствия плотного органоминерального слоя после повышения отрицательного заряда раствора начался обратный процесс, катионы стали возвращаться в раствор, а в глину молекулы воды. На 12е сутки образец разрушился.

При увеличении концентрации CaCl2 жидкого стекла до 3% как и в первом случае произошло некоторое повышение прочности глины, а на 2е сутки образец разрушился. При дальнейшем повышении концентрации CaCl2 и жидкого стекла происходило постепенное диспергирование глины, прочность образца не возросла.

Таким образом, никакие ингибиторы гидратации без включения ингибиторов диспергирования (органических полимеров) не способны эффективно повышать крепящие свойства.

Целью экспериментальных исследовании растворов II-ой группы являлось определение влияния одновалентных катионов на крепящие свойства полимерполисолевых растворов. Для приготовления растворов использовали органические полимеры (КМЦ – 700, КРЭМ) соли двухвалентных металлов CaCl2, MgCl2 и глинофильный анионоактвный щелочной электролит – жидкое стекло.

Результаты замеров пластической прочности глины выдержаных в растворах II-ой группы показаны в таблице 10.4

Таблица 10.4

Влияние силикатно-магниевых и силикатно - кальциевых растворов на пластическую прочность неуплотненной глины.

Состав, %

Время выдержки

образца до

разрушения, сут

Максимальная пластическая прочность глин, МПа

полимеры

жидкое

стекло

соль

КМЦ-700-2

КМЦ-700-1

КРЭМ-3

3

3

1

MgCl2-5

MgCl2-10

CaCl2-10

7

9

7

на 1е сутки ~2,

на 1е сутки ~2,5

на 2е сутки ~6,5

В контакте глины с раствором на поверхности образца в результате взаимодействия жидкого стекла, ионов Mg2+и полимеров образовался плотный “гидрофобный” органоминиральный слой, но вследствие отсутствия в объеме “гидрофобных” одновалентных катионов и гидрофильности поверхностного слоя вода всасывалась в горную породу, насыщала её и в конечном счете образец разрушился.

Следовательно, без ингибиторов набухания (солей одновалентных металлов) также как и без органических полимеров растворы не способны эффективно повышать крепящие свойства.

Цель экспериментальных исследований с растворами III-ей группы: выявить влияние насыщенных растворов одновалентных металлов на их крепящие свойства.

Для исследования был приготовлен раствор насыщенный солями NaCl –20% плюс KCl -10%, в качестве полимеров использовалась КМЦ – 700. Полученные результаты экспериментов приведены в таблице 10.5.

Таблица 10.5

Влияние ингибирующего, насыщенного солями NaCl и KCl раствора на пластическую прочность неуплотненной глины.

Состав, %

Время выдержки образца до разрушения, сут

Максимальная пластическая прочность глин, МПа

полимеры

NaCl

KCl

КМЦ-700-2

20

10

65

образец не разрушился

на 21е сутки ~27 МПа,

далее прочность не изменялась

Здесь как раз тот случай, когда в глине присутствуют обменные катионы Са2+. Под воздействием солей NaCl и KCl произошла дегидратация глины, её частицы в результате этого сблизились и обменными катионами Са2+ были сшиты (табл.10.5, рис. 10.12 п 1а). Следовательно даже при высокой концентрации электролитов, солей одновалентных металлов, неспособных вызвать коагуляцию КМЦ – 700 и диспергирование глины обратный процесс в растворе не возможен.

Влияние жидкого стекла на крепящие свойства растворов одновалентных металлов (IV-ой группа растворов) показано в таблице 10.6, а изменение пластической прочности на рис. 10.12.

Таблица 10.6

Состав, %

Время выдержки

образца до

разрушения, сут

Максимальная

пластическая

прочность глины, МПа

полимеры

KCl

NaCl

Na2SiО3

NaOH

1

2

34

КМЦ-700-2

КРЭМ-3

МК-1

КРЭМ-3

10

7

7

7

20

5

5

-

3

1

1

1

-

-

-

0,25

не разрушился

27

22

22

на 4е сутки и далее~27

на 7е сутки ~ 20

на 7е сутки ~ 17

на 2е сутки ~ 12

Влияние силикатных полимерполисолевых растворов на пластическую прочность неуплотненной глины.

Рис10.12 Влияние силикатных полимерполисолевых растворов на пластическую прочность неуплотненной глины. 1-в растворе 1; 2- в растворе 2; 3- в растворе 3; 4- в растворе 4. (см. табл. 10.6)

Из табл. 10.6 видно, что добавление в насыщенный солями NaCl и KCl раствор 3% жидкого стекла пластическую прочность глин не повышает (см. табл. 10.5 и 10.6 и рис. 10.12 п1 и 1а), но снижает время затвердевания с 21 до 4-х суток.

Введение жидкого стекла в ненасыщенный одновалентными катионами раствор повышает прочность кальциевой неуплотненной глины, но устойчивого равновесия не наблюдается, процесс становится обратимым.

Снижение вязкости раствора с 20 до 16 (путем замены полимера 3% КРЭМ на 1% МК) снижает время выдержки образца до разрушения и пластическую прочность образца.

И наконец, снижение концентрации одновалентных катионов в растворе снижает крепящие свойства раствора и время выдержки образца до разрушения.

Влияние магниевых полимерполисолевых растворов на крепящую способность показано в табл. 10.7, а изменение пластической прочности с течением времени на рис. 10.13

Таблица 10.7

Влияние магниевых полимерполисолевых растворов на пластическую прочность неуплотненной глины.

Состав, %

Время выдержки образцов глины до разрушения, сут.

Максимальная

пластическая прочность глины, МПа

полимер

KCl

NaCl

Бишофит

1 КМЦ 700-1

2 КМЦ 700-3

3 КМЦ 700-2

10

10

-

-

-

5

3

5

10

13

29

не разрушился

на 1е сутки-9

на 7е сутки-17

на 45е сутки 27 и далее прочность не изменялась

Рис10.13 Влияние магниевых полимерполисолевых растворов различного состава на пластическую прочность неуплотненной глины. 1- в растворе 1, , 2- в растворе 2, 3- в растворе 3; (см. табл. 10.7)

Из табл. 10.7 видно, что равновесной концентрацией бишофита является 10%, что близко расчетному значению. При меньшей концентрации процесс неустойчивый, обратимый (рис 10.13) процесс упрочнения (ассоциации частиц) переходит в процесс разупрочнения (диссоциации глинистых частиц).

Первый закон разбавления Оствальда утверждает, что степень ассоциации (диссоциации) взаимодействующих ионов зависит от концентрации электролитов. С увеличением концентрации степень ассоциации (диссоциации) ионов понижается. На рис. 10.13 видно, что с увеличением концентрации ионов Mg2+ до равновесной, кривая ассоциаций более крутая, чем кривая диссоциации, а максимальная прочность более высокая (пропорциональна концентрации электролитов).

Кривая диссоциации в связи с меньшей ее интенсивностью более пологая. Причем, чем выше концентрация одновалентных катионов, тем более пологая кривая диссоциации, меньше ее интенсивность. Это связано с образованием органоминерального слоя (разной плотности) нейтрализации заряда глинистых частиц, затрудняющих миграцию катионов и молекул воды.

Влияние кальциевых полимерполисолевых растворов на их крепящие свойства показано в табл. 10.8 и рис. 10.14

Таблица 10.8

Влияние кальциевых полимерполисолевых растворов на пластическую прочность глины

Состав, %

Время выдержки

образца в растворе до разрушения, сут

Максимальная плас-

тическая прочность

глины, МПа

полимер

КCl

NaCl

CaCl

прочее

1

2

3

4

5

КМЦ 700-1

КМЦ 700-1

КМЦ 7001,5

КРЭМ-3

КРЭМ-3

5

10

-

-

7

-

-

5

10

10

3

3

10

1

3

-

-

-

палыгорскит 7

Na4 P2O5 0,5

16

24

21

не разрушился

не разрушился

на 6е сутки-17

на 7е сутки-17

на 10е сутки-12

на 17е сутки-17 и далее

прочность не изменялась

на 19е сутки-27

Рис.10.14 Влияние кальциевых полимерполисолевых растворов на пластическую прочность неуплотненной глины:1-в растворе 1; 2-в растворе 2; 3-в растворе 3; 4-в растворе 4; 5-в растворе 5 (см. табл. 10.8)

В соответствии с табл. 10.8 и рис. 10.14 вытекают следующие выводы:

1. С учетом наличия ионов Са+ в глине концентрация оказалась выше равновесной, поэтому наблюдаются обратимые процессы.

2. Гидрофильные ионы Са+ менее глинофильны и более подвижны, чем катионы Мg+. Они вместе с водой и ионами К+могут проникать в объем глины на значительную глубину и не способны как глинофильные ионы Мg2+ и SiO32- образовывать плотные органофильные слои на поверхности глин. В связи с этим угол наклона кривой диссоциации при малой концентрации КСl и NaCl мало отличается от угла наклона кривой ассоциации.

3. С увеличением концентрации КСl с 5% до 10% при одинаковой максимальной пластической прочности увеличивается время выдержки образца глины до разрушения (кривая диссоциации более пологая).

4. С увеличением концентрации CaCl2 с 3% до 10% (значительно превышающей равновесную концентрацию) максимальная пластическая прочность глины снизилась с 17 до 12 МПа.

5.Повышение вязкости раствора (за счет введения 7% палыгорскита) с 16 до 20 и уменьшение концентрации соли CaCl до1% (совместно с обменными катионами глины их концентрация близка к равновесной) удалось получить устойчивое равновесие процесса. Пластическая прочность глины в течение всего периода наблюдения оставалась постоянной, равной ~ 17 МПа.

6.В ведением в раствор 0,5% пирофосфата также удалось привести процесс в равновесие. Добавление пирофосфата за счет их ионов приводит к разжижению пресных глинистых растворов. В соленых хлоркальциевых расворах анионы пирофосфаты ведут себя аналогично анионам жидкого стекла. Для определения влияния равновесной и высокой концентрации бишофита в присутствии жидкого стекла на крепящие свойства раствора были приготовлены и испытаны магниево – силикатные полимерполисолевые растворы ( VII-ой группы). Результаты экспериментов показаны в табл. 10.9, а изменение пластической прочности глин во времени на рис. 10.15.

В конце исследований полимерполисолевых растворов были проведены эксперименты по выявлению влияния трехвалентных катионов на крепящие свойства раствора.

Результаты экспериментов приведены в табл. 10.10 и на рис. 10.16.

Таблица 10.9

Влияние кальциево-силикатных полимерполисолевых растворов на пластическую прочность глины.

Состав,

Время выдержки образцов до

разрушения, сут

Максимальная пластическая прочность глины, МПа

Полимер

KCl

NaCl

бишофит

жидкое стекло

1

КМЦ 700-1,5

-

10

10

1*

не разрушился

на 30е сутки 34,0

2

КМЦ 700-2

10

20

10

3

22

на 4е сутки 12

3

КМЦ 700-2

7

20

20

1

24

на 10е сутки 9

4

КМЦ 700-2

-

20

20

5

9

на 5е сутки 5

5

КРЭМ – 3

-

20

20

1*

26

на 15е сутки 12

6

КРЭМ – 3

7

-

MgO-0,25

1

не разрушился

на 22е сутки 48

1

Рис10.15 Влияние кальциевосиликатных полимерполисолевых растворов на пластическую прочность неуплотненной глины; 1-в растворе 1; 2-в растворе 2; 3-в растворе 3; 4-в растворе 4; 5-в растворе 5;

На основании полученных результатов исследований VII группы можно сделать следующие выводы:

1. Добавление 1% жидкого стекла и 0,5 % бихромата аммония в

магниевый полимерполисолиевый раствор (см. табл. 10.7 и табл.10.9) повышает пластиче-скую прочность неуплотненной глины с 27 до 34 МПа, без разрушения образца. (раствор 1)

2. Введение в насыщенный солями КС1 и NaCl с 10% бишофита раствор (табл. 10.6) 3% жидкого стекла выводят раствор из равновесного состояния

( раствор 2).

3. Увеличение в магниево-силикатных полимерполисолиевых растворах концентрации Mg2+ выше равновесной делает процесс нестабильным, обрати­мым, время выдержки образцов в растворе и пластическая прочность понижаются. (раствор 3)

4. Введение в раствор 5% жидкого стекла резко снижает время выдержки и пластическую прочность глины, значительно повышает вязкость раствора, по­этому для сохранения высоких крепящих свойств раствора, вводить жидкого стекла выше 1 % не рекомендуется. ( раствор 4;5)

5. Введение в раствор вместо бишофита окиси магния (0,25% ) резко повы­шает эффективность бурового раствора, приводит процесс твердения в равновесие, повышает пластическую прочность глины. ( раствор 6).

В конце исследований полимерполисолевых растворов были проведены эксперименты по выявлению влияния трехвалентных катионов на крепящие свойства раствора.

Результаты экспериментов приведены в табл. 10.10 и на

рис. 10.16.

Таблица 10.10

Влияние кальциево-алюмо-силикатных полимерполисолевых растворов на пластическую прочность глины.

Состав %

Время выде- ржки образ- цов до разру- шения, сут

Максимальная пластическая прочность гли­ны, МПа

Полимер

NaCl

СаС12

Na2Si03 2О

A12(SO4)3 18Н2О

1

КРЭМ - 3

-/5

5

2

2

21

на 12е сутки 27

2

КРЭМ-3

11-

1

1

не разрушился

на 35е сутки и далее 35

3

КРЭМ - 3

11-

3

0,5

1

не разрушился

на 23 е сутки и

далее «21

4

КРЭМ-2

10/-

3

1

1

не разрушился

на 6-е сутки и далее 48

Рис10.16 Влияние кальциевосиликатных полимерполисолевых растворов на пластиче­скую прочность неуплотненной глины; 1-в растворе 1; 2-в растворе 2; 3-в растворе 3; 4-в растворе 4;

Проведенные исследования подтверждают теоретические выводы: наиболее эффективны полимерполисолевые растворы, содержащие равновесные концентрации солей трехвалентных металлов и жидкого стекла (по 1%) при повышенной концентрации ингибиторов гидратации (KCl, CaCl2).

Как и следовало ожидать наиболее эффективной равновесной концентрацией Al2(SO4)3*18H2O для исследуемой глины является концентрация равная 1%.

Если предположить, что при введении одновалентного сульфата алюминия Al2(SO4)3*18H2O, жидкого стекла Na2SiO3*9H2O и 7% KCl происходит их взаимодействие с образованием алюмосиликата типа иллита (при наличии достаточного количества калия наиболее вероятно образование минералов группы иллита) KАl2(AlSiO3)O10((OH)2H2O), в котором содержится алюминия 24,2%, кремния 26,4%. В соли алюминия Al2(SO4)3*18H2O содержится 11,8%, Al3+ в жидком стекле 10,6% кремния, то есть для получения иллита на 1% Al2(SO4)3*18H2O необходимо примерно 1,2% жидкого стекла.

Проведенные исследования показывают близкие к расчетным значения равновесных концентраций вводимых солей.

При введении солей кальция до 3% устойчивая прочность глины еще больше возрастает.

При больших значениях сульфата алюминия и жидкого стекла(по2%) процесс становится обратимым. При меньших значениях жидкого стекла пластическая устойчивая прочность глин снижается.