Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 3(19-27главы).doc
Скачиваний:
29
Добавлен:
15.11.2019
Размер:
4.8 Mб
Скачать

Инструментальные методы анализа

69

Спектроскопическими называются методы анализа, в которых качественно и количественно измеряется взаимодействие электромагнитного излучения с веществом.

Природа и свойства электромагнитного излучения

Электромагнитное излучение имеет двойственную природу и обладает как волновыми, так и корпускулярными (дискретными) свойствами.

Электромагнитная волна состоит из двух компонентов - электрического и магнитного, которые перпендикулярны друг другу и к направлению движения волны (рис.19.1). В отличие от других волновых процессов, например, звуковых волн для распространения электромагнитного излучения не нужна проводящая среда

.

Рис. 19.1. Электромагнитная волна

Электромагнитная волна, как и любая волна, обладает следующими основными параметрами.

Длина волны () - расстояние, которое проходит волна за один период её колебаний (расстояние между двумя последовательными максимумами).

Длина волны измеряется в метрах (м). На практике обычно используют кратные единицы - нанометр (1 нм = 110-9 м) или микрометр (1 мкм = 110-6 м).

Частота ()- число колебаний в 1 секунду.

Частота измеряется в герцах (1Гц = 1 с-1) или в кратных ему единицах, например, 1МГц = 1106 Гц. Длина волны и частота колебаний связаны между собой следующим уравнением

,

где с - скорость распространения волны в данной среде.

Для электромагнитной волны

,

где с0 - скорость света в вакууме (2,99792108 м/с), n - показатель преломления среды.

Частота является более фундаментальной характеристикой, чем длина волны. Она зависит только от свойств источника излучения и не зависит от свойств среды. Длина волны зависит от природы среды, температуры и давления.

Волновое число - число волн, приходящихся на 1 см в вакууме. , где  - длина волны (см). Размерность - см-1.

Электромагнитное излучение можно рассматривать как поток частиц энергии - фотонов. Связь между волновой и корпускулярной природой электромагнитного излучения устанавливает уравнение Планка:

где h - постоянная Планка (h = 6,626210-34 Джс)

Единицей измерения энергии является Джоуль (Дж). В спектроскопии часто используют внесистемную единицу - электрон-вольт (1эВ = 1,602210-19 Дж). Чем больше длина волны электромагнитного излучения (меньше частота колебаний), тем меньше его энергия.

Совокупность всех энергий (длин волн, частот) электромагнитного излучения называется электромагнитным спектром.

В спектроскопических методах анализа спектром (спектром поглощения, спектром испускания) называется зависимость между энергией кванта и числом квантов, обладающих данной энергией.

Классификация спектроскопических методов анализа

Существует несколько подходов к классификации спектроскопических методов анализа. Классификационным критерием может быть вид электромагнитного излучения, характер его взаимодействия с веществом, вид частиц, взаимодействующих с электромагнитным излучением.

Вид используемого электромагнитного излучения

В спектроскопических методах анализа используется практически весь диапазон электромагнитного излучения: от -излучения до радиоволн. Классификация спектроскопических методов анализа в зависимости от используемого электромагнитного излучения и вызываемых им процессов приведена в табл.

Классификация спектроскопических методов анализа в зависимости

от используемого электромагнитного излучения

Используемая

область ЭМИ

Вызываемый процесс

Метод анализа

-излучение

10-4-0,1 нм

ядерные реакции

нейтроно-активаци­онный анализ

рентгеновское

0,1-10 нм

изменение энергии

внутренних электронов

рентгеновская

спектроскопия

УФ-излучение

200-400 нм

изменение энергии

валентных электронов

УФ-спектроскопия

видимое

400-750 нм

то же

спектроскопия в

видимой области

ИК-излучение

10-6-10-3 м

изменение колебательного

состояния молекулы

ИК-спектроскопия

микроволновое

10-3 - 10-1 м

изменение вращательного

состояния молекулы

микроволновая

спектроскопия

радиоволны

10-1 - 101 м

электроно-спиновые переходы

ядерно-спиновые переходы

спектроскопия ЭПР

спектроскопия ЯМР

Все виды электромагнитного излучения имеют одинаковую природу, поэтому между различными спектроскопическими методами анализа имеется много общего. Вместе с тем, различные виды электромагнитного излучения по-разному взаимодействуют с веществом. Поэтому каждый спектроскопический метод анализа имеет свою область применения, свою аппаратуру, особенности получения аналитического сигнала и т.д.

Характер взаимодействия электромагнитного излучения с веществом

В зависимости от характера взаимодействия электромагнитного излучения с веществом различают следующие группы спектроскопических методов анализа:

  • методы, основанные на поглощении электромагнитного излучения (абсорбционные методы);

  • методы, основанные на испускании веществом электромагнитного излучения (эмиссионные методы);

  • методы, основанные на рассеянии электромагнитного излучения, на отражении электромагнитного излучения и других процессах.

В абсорбционных спектроскопических методах через исследуемый образец пропускают электромагнитное излучение определённой длины волны. Если в данном образце имеются частицы, способные поглощать такое электромагнитное излучение, то интенсивность выходящего излучения будет меньше интенсивности излучения, попадающего на образец. Практически в абсорбционных методах анализа сравнивают интенсивность электромагнитного излучения, прошедшего через образец и не прошедшего через него (рис. 19.3).

В эмиссионных спектроскопических методах исследуемые частицы тем или иным образом переводят в возбуждённое состояние. При возвращении в основное состояние они испускают электромагнитное излучение, интенсивность которого и измеряется (рис 19.3). Переход частицы в возбуждённое состояние может происходить как в результате воздействия на неё энергии электромагнитного излучения (например, при фотолюминесценции), так и в результате воздействия других видов энергии (например, фотометрия пламени).

Рис. 19.3. Принципиальная схема абсорбционных (1) и эмиссионных (2) спектроскопических методов анализа

Вид частиц, взаимодействующих с электромагнитым излучением

В зависимости от вида частиц, взаимодействующих с электромагнитным излучением, спектроскопические методы анализа разделяют на атомные и молекулярные. Атомные и молекулярные спектроскопические методы отличаются друг от друга характером получаемых спектров (атомные - линейчатые, молекулярные состоят из широких полос поглощения или испускания), используемой аппаратурой и кругом решаемых задач.

70