Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 3(19-27главы).doc
Скачиваний:
29
Добавлен:
15.11.2019
Размер:
4.8 Mб
Скачать

Практическое применение

АЭС используется для обнаружения и количественного определения различных элементов, обычно металлов. В качественном анализе используется наличие характерных линий в получаемых спектрах испускания. Наиболее подходящий атомизатор для качественного анализа - дуговой разряд, так как пламя даёт спектры бедные спектральные линиями, атомизатор с ИСП - наоборот, очень сложные спектры, которые можно расшифровать только с помощью компьютера.

Количественный анализ в АЭС основан на зависимости интенсивности испускания от концентрации данного элемента в анализируемой пробе. Зависимость между интенсивностью спектральных линий и концентрацией элемента в пробе является более сложной, чем, например, в ААС, и описывается уравнением Ломакина-Шайбе

или

где a и b - эмпирические константы, которые характеризуют процессы, происходящие на поверхности электродов (a) и самопоглощение излучения (b).

Зависимость I от C не является линейной (в отличие от зависимости lgI от lgC). Самый большой диапазон линейности наблюдается при использовании атомизатора с ИСП.

Для определения концентрации в АЭС применяют метод градуировочного графика и метод добавок. Для построения градуировочного графика часто используют внутренние стандарты.

Предел обнаружения в АЭС при определении хорошо атомизируемых и легковозбудимых элементов с использованием пламенного атомизатора составляет 10-7-10-2%, других элементов (ИСП-атомизатор) - 10-8 - 10-2%.

Воспроизводимость при использовании пламени и ИСП - Sr = 0,01-0,05, при использовании искры и дуги Sr = 0,05 - 0,2.

77

Люминесцентной спектроскопией называют группу эмиссионных спектроскопических методов анализа, основанных на явлении люминесценции.

Люминесценцией называется свечение атомов, молекул и других более сложных частиц, возникающее в результате электронного перехода при их возвращении из возбуждённого состояния в основное. Люминесценцию иногда называют холодным светом, так как обычно температура лю­минесцирующего тела не отличается от температуры окружающей среды.

Классификация видов люминесценции

Понятие “люминесценция” включает в себя множество различных явлений. Существует несколько систем их классификации.

В аналитической химии чаще всего используется молекулярная фотолюминесценция. В зависи­мости от природы основного и возбуждённого состояния молекулы её подразделяют на флуо­ресценцию и фосфоресценцию.

Основные характеристики и закономерности люминесценции

Основными характеристиками люминесценции являются:

  • спектр возбуждения,

  • спектр испускания (спектр люминесценции),

  • квантовый и энергетический выходы,

  • поляризация, время жизни и т.д.

Спектр возбуждения люминесценции (флуоресценции, фосфоресценции) - зависимость интенсивности испускаемого света с фиксированной длиной волны от длины волны или другой волновой характеристики возбуждающего света.

Возбуждая молекулу вещества светом с длиной волны, соответствующей max спектра возбуждения, можно получить флуоресценцию с максимальной интенсивностью. В разбавленных растворах спектр возбуждения флуоресценции совпадает со спектром поглощения вещества.

Спектр люминесценции - зависимость интенсивности испускаемого света от его длины волны при фиксированной длине волны возбуждающего света.

В табл. 21.1 приведены основные свойства, присущие спектрам люминесценции.

Основные свойства спектров люминесценции

Свойство

Объяснение

Спектр люминесценции не зависит от длины волны возбуждающего света (правило М.Каши)

Независимо от того, в какое возбуждённое состояние перешла молекула при поглощении фотона, испускание всегда происходит при переходе между первым возбуждённым и основным энергетическими уровнями

Как правило, спектр люминесценции в целом и его максимум всегда сдвинуты по сравнению со спектром поглощения и его максимумом в сторону больших длин волн (меньших энергий) - правило Стокса-Ломмеля

Часть поглощённой энергии теряется за счёт колебательной релаксации при столкновении с другими молекулами, кроме того, растворитель стабилизирует возбуждённое состояние и уменьшает его энергию

Для многих веществ нормированные спектры поглощения (только самая длинноволновая полоса) и флуоресценции, изображённые в функции частот или волновых чисел, симметричны относительно прямой, проходящей перпендикулярной оси абсцисс через точку пересечения этих спектров (правило В.Л. Лёвшина)

Поглощение (самая длинноволновая полоса) и испускание вызваны одними и теми же переходами (S0  S1 для флуоресценции)

Квантовый выход (обозначение Вкв, Q, ) - отношение числа испускаемых фотонов к числу поглощаемых

Энергетический выход эн) - отношение энергии излучаемого света к энергии поглощаемого

Между Вкв и Вэн существует следующая взаимосвязь

Поскольку обычно исп < погл, то Вэн < Вкв

Квантовый выход люминесценции не зависит от возб вплоть до некоторой , находящейся в области наложения спектров поглощения и испускания, после чего резко уменьшается. Энергетический выход зависит от возб: вначале он увеличивается прямо пропорционально возб , затем на некотором интервале не изменяет своей величины, после чего резко уменьшается (закон Вавилова).

Влияние различных факторов на интенсивность флуоресценции растворов

Люминесценция и, в частности, флуоресценция в гораздо большей степени подвержена влиянию различных факторов, чем поглощение света. Интенсивность флуоресценции зависит от:

  • природы вещества;

  • концентрации вещества в растворе;

  • условий, в которых находится флуоресцирующее вещество (температура, растворитель, рН, наличие в растворе других веществ, способных влиять на флуоресценцию).