Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
L_Quadr_05.doc
Скачиваний:
2
Добавлен:
16.11.2019
Размер:
720.38 Кб
Скачать

- 11 -

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

Московский государственный институт электроники и математики

(технический университет)

Вычисление интегралов

Методические указания

для выполнения лабораторных работ и домашних заданий

по дисциплине "Информационные технологии 1"

Направление подготовки: 654700 – Информационные системы

Номер специальности: 071900 – Информационные системы и технологии

Факультет Прикладной математики

Кафедра

"Математическое обеспечение систем обработки информации и управления"

Автор: к.т.н., доцент Калинин Б.Н.

Москва – 2005 г.

Лабораторная работа

Вычисление интегралов

Требуется выполнить два задания.

а) Построить график изменения подинтегральной функции. Вычислить интеграл с помощью формул Гаусса и Ньютона-Котеса, предварительно выбрав весовую функцию и определив узлы интерполяции и коэффициенты интерполяционной формулы. Расчет провести для трех и четырех узлов. В случае бесконечных пределов интегрирования крайние узлы в формуле Ньютона-Котеса располагать в тех же точках, что и узлы формулы Гаусса. Для каждого из методов найти погрешность вычислений, сравнив результаты расчетов с точным значением интеграла.

б) Построить график изменения подынтегральной функции. Вычислить интеграл, используя составную формулу Симпсона, а также формулу Симпсона совместно с процессом Эйткена. Найти эффективный порядок формулы. Для каждого из методов найти погрешность вычислений. Проверить, как меняется погрешность вычислений при изменении числа подотрезков, на которые делится отрезок интегрирования.

Замечание. Программы Mathcad и Mathematica по умолчанию не раскрывают неопределенности вида Во избежание ошибок в точках, где имеют место неопределенности, следует в явном виде вычислять пределы.

Для получения зачета студент должен продемонстрировать на экране компьютера действующую программу, реализующую решение поставленных задач. Студент должен уметь объяснить все детали представленной программы и ответить на связанные с темой теоретические вопросы.

Методические указания

Квадратурные формулы Гаусса и Ньютона-Котеса являются формулами интерполяционного типа. Эти формулы выводятся путем замены подинтегральной функции интерполяционным многочленом Лагранжа и интегрирования этого многочлена. При этом часто в подинтегральном выражении предварительно выделяют положительный сомножитель – весовую функцию – учитывающий особенности подинтегральной функции. Формулы могут быть представлены в виде:

(1)

Здесь (x)0 – весовая функция, а коэффициенты определяются формулой:

, (2)

где

Цель введения весовой функции состоит в повышении точности квадратурной формулы путем учета особенностей подинтегральной функции. Например, при вычислении интеграла

,

где f(x) - гладкая функция, не равная нулю в точке x=0, целесообразно выделить в качестве весовой функцию ; тогда коэффициенты C определяются по формуле (2) с учетом особенности подинтегральной функции в начальной точке отрезка интегрирования. Если подинтегральная функция не имеет особенностей, то следует положить (x) 1.

Формулы Ньютона-Котеса строятся на равномерной сетке узлов:

Различают формулы замкнутого типа, если и , и формулы разомкнутого типа, если хотя бы один из концевых узлов не совпадает с соответствующей граничной точкой отрезка интегрирования. Формулы Ньютона-Котеса, построенные для n узлов, точны для любого многочлена степени меньше n. Подставив в формулу (1) многочлен нулевой степени f(x)1, получим условие нормировки коэффициентов:

. (3)

Квадратурные формулы Гаусса, или квадратурные формулы наивысшей алгебраической степени точности строятся для неравномерной сетки узлов. Узлы интерполяции xk и коэффициенты выбираются так, чтобы формулы были точны для любого алгебраического многочлена степени m  2·n–1. Это означает, что , удовлетворяет системе уравнений:

(4)

Решение системы (4) дает один из способов нахождения параметров формулы Гаусса. Отметим, что первое из уравнений системы совпадает с условием нормировки коэффициентов (3).

Обозначим через многочлен, корнями которого являются узлы интерполяции:

(5)

Для формулы Гаусса справедливо следующее утверждение: многочлен ортогонален с весом (x) любому многочлену q(x) степени меньше n, т.е.

; (6)

Условие ортогональности (6) эквивалентно требованиям:

(7)

которые представляют собой систему уравнений относительно неизвестныx Отсюда следует второй способ нахождения параметров формулы Гаусса: положение узлов интерполяции определяется из системы (7), а коэффициенты вычисляются по формуле (2), либо путем решения системы (4), в которой в данном случае достаточно оставить только n уравнений.

Если весовая функция четна относительно середины отрезка интегрирования, то есть

[(a + b)/2 – y] = [(a + b)/2 + y] при 0  y  (ba)/2, или, иначе,

[x] = [a + bx] при axb,

то формула Гаусса является симметричной: узлы формулы расположены симметрично относительно центра отрезка, а коэффициенты попарно равны:

(a + b)/2 – = – (a + b)/2 или = a + b – , = , k = 1, . . ,m,

где m есть целая часть частного n/2. Если число узлов – нечетно: то = (a + b)/2, а коэффициент может быть определен из условия нормировки

.

Таким образом, при наличии четной весовой функции количество уравнений в системах (4) и (7) может быть уменьшено не менее чем в два раза.

Произвольный отрезок интегрирования [a, b] можно привести к стандартному отрезку [-1, 1] линейным преобразованием:

t = -1 + (x – a)·2/(ba), x = a + (t + 1)(ba)/2

Если a= -1, b=1, то для симметричных формул имеем:

,

Напомним, что интеграл в симметричных пределах от нечетной функции равен нулю. Так, например,

независимо от значений , k = 1, . . ,m. Поэтому в случае симметричного отрезка интегрирования для нахождения узлов формулы Гаусса следует использовать только те из уравнений (7), в которых подинтегральная функция является четной функцией x.

Из условия ортогональности (6) следует, что многочлены , описывающие узлы формулы Гаусса, образуют ортогональную систему:

, n  m.

Для ряда весовых функций известны соответствующие ортогональные системы многочленов и формулы, позволяющие непосредственно вычислять положение узлов и коэффициенты формулы Гаусса.

Рассмотрим типичные примеры.

1. (x) 1, a = -1, b = 1. В этом случае узлы формулы Гаусса совпадают с корнями многочлена Лежандра :

, , .

Для многочленов Лежандра существует рекуррентная формула:

.

Значения коэффициентов можно определить по формуле:

2. (x) = 1/ , a = -1, b = 1. Узлы квадратурной формулы Гаусса совпадают с корнями многочленов Чебышева первого рода T(x) и весовые коэффициенты для всех узлов одинаковы:

= Cos(n·arcCos(x)), = Cos[(2k-1)/(2n)], = /n, k = 1, . . ,n.

3. (x) = , a = -1, b = 1. Узлы квадратурной формулы Гаусса совпадают с корнями многочленов Чебышева второго рода:

= Sin[(n+1)·arcCos(x)]/Sin[arcCos(x)],

Узлы многочленов расположены в точках

= Cos[k·/(n+1)], k = 1, . . ,n

Например, при n=3:

Вообще для данной весовой функции условие нормировки коэффициентов формулы Гаусса имеет вид:

4. (x) = exp( ), a = –, b = . Узлы квадратурной формулы Гаусса совпадают с корнями многочленов Эрмита:

= 1,

или

Весовые коэффициенты могут быть вычислены по формулам:

.

5. (x) = ·exp( ), a = 0, b = . Узлы квадратурной формулы Гаусса совпадают с корнями многочленов Лагерра:

.

Весовые коэффициенты могут быть вычислены по формулам:

  1. (x) = a = –1, b = 1. Узлы формулы Гаусса совпадают с корнями многочленов Якоби:

.

В частном случае, при , -1/2, (x) = первые три многочлена Якоби имеют вид:

Формула Ньютона-Котеса замкнутого типа при n=3 и (x)1:

h = b – a, –

называется простой формулой Симпсона. Для повышения точности расчетов отрезок интегрирования часто разбивают на несколько подотрезков. Пусть отрезок [a, b] разбит на m частей так, что , , i=0,..,m-1 и . Формула

называется составной формулой Симпсона. Для подинтегральной функции, имеющей непрерывную четвертую производную, формула Симпсона имеет четвертый порядок точности; главный член погрешности определяется соотношением:

Если подинтегральная функция имеет какие-либо особенности, то порядок точности квадратурной формулы снижается. Так, для формулы Симпсона эффективный порядок может быть менее четырех. В подобных случаях для повышения точности расчетов и для определения значения эффективного порядка выбранной квадратурной формулы используют процесс Эйткена. Для этого проводят расчеты с различным шагом h (или, иначе, с делением исходного отрезка [a, b] на разное число частей). Обозначим: – результат расчетов при использовании шага , k=1;2;3, q – целое число (например, q=2). Уточненное значение интеграла определяется по формуле:

.

Эффективный порядок квадратурной формулы оценивается соотношением

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]