Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция моделирование.doc
Скачиваний:
32
Добавлен:
17.11.2019
Размер:
4.87 Mб
Скачать
  1. Биномиальное распределение

Пусть имеется некое событие A. Вероятность появления события A равна p, вероятность непоявления события A равна 1 – p, иногда ее обозначают как q. Пусть n — число испытаний, m — частота появления события A в этих n испытаниях.

Известно, что суммарная вероятность всех возможных комбинаций исходов равна единице, то есть:

1 = pn + n · pn – 1 · (1 – p) + Cnn – 2 · pn – 2 · (1 – p)2 + … + Cnm · pm · (1 – p)n – m + … + (1 – p)n.

pn — вероятность того, что в n испытаниях событие A произойдет n раз;

n · pn – 1 · (1 – p) — вероятность того, что в n испытаниях событие A произойдет (n – 1) раз и не произойдет 1 раз;

Cnn – 2 · pn – 2 · (1 – p)2 — вероятность того, что в n испытаниях событие A произойдет (n – 2) раза и не произойдет 2 раза;

Pm = Cnm · pm · (1 – p)n – m — вероятность того, что в n испытаниях событие A произойдет m раз и не произойдет (n – m) раз;

(1 – p)n — вероятность того, что в n испытаниях событие A не произойдет ни разу;

— число сочетаний из n по m.

Математическое ожидание M биномиального распределения равно:

M = n · p,

где n — число испытаний, p — вероятность появления события A.

Среднеквадратичное отклонение σ:

σ = sqrt(n · p · (1 – p)).

Пример 1. Вычислить вероятность того, что событие, имеющее вероятность p = 0.5, в n = 10 испытаниях произойдет m = 1 раз. Имеем: C101 = 10, и далее: P1 = 10 · 0.51 · (1 – 0.5)10 – 1 = 10 · 0.510 = 0.0098. Как видим, вероятность наступления этого события достаточно мала. Объясняется это, во-первых, тем, что абсолютно не ясно, произойдет ли событие или нет, поскольку вероятность равна 0.5 и шансы здесь «50 на 50»; а во-вторых, требуется исчислить то, что событие произойдет именно один раз (не больше и не меньше) из десяти.

Пример 2. Вычислить вероятность того, что событие, имеющее вероятность p = 0.5, в n = 10 испытаниях произойдет m = 2 раза. Имеем: C102 = 45, и далее: P2 = 45 · 0.52 · (1 – 0.5)10 – 2 = 45 · 0.510 = 0.044. Вероятность наступления этого события стала больше!

Пример 3. Увеличим вероятность наступления самого события. Сделаем его более вероятным. Вычислить вероятность того, что событие, имеющее вероятность p = 0.8, в n = 10 испытаниях произойдет m = 1 раз. Имеем: C101 = 10, и далее: P1 = 10 · 0.81 · (1 – 0.8)10 – 1 = 10 · 0.81 · 0.29 = 0.000004. Вероятность стала меньше, чем в первом примере! Ответ, на первый взгляд, кажется странным, но поскольку событие имеет достаточно большую вероятность, вряд ли оно произойдет только один раз. Более вероятно, что оно произойдет большее, чем один, количество раз. Действительно, подсчитывая P0, P1, P2, P3, …, P10 (вероятность того, что событие в n = 10 испытаниях произойдет 0, 1, 2, 3, …, 10 раз), мы увидим:

C100 = 1, C101 = 10, C102 = 45, C103 = 120, C104 = 210, C105 = 252, C106 = 210, C107 = 120, C108 = 45, C109 = 10, C1010 = 1;

P0 = 1 · 0.80 · (1 – 0.8)10 – 0 = 1 · 1 · 0.210 = 0.0000…; P1 = 10 · 0.81 · (1 – 0.8)10 – 1 = 10 · 0.81 · 0.29 = 0.0000…; P2 = 45 · 0.82 · (1 – 0.8)10 – 2 = 45 · 0.82 · 0.28 = 0.0000…; P3 = 120 · 0.83 · (1 – 0.8)10 – 3 = 120 · 0.83 · 0.27 = 0.0008…; P4 = 210 · 0.84 · (1 – 0.8)10 – 4 = 210 · 0.84 · 0.26 = 0.0055…; P5 = 252 · 0.85 · (1 – 0.8)10 – 5 = 252 · 0.85 · 0.25 = 0.0264…; P6 = 210 · 0.86 · (1 – 0.8)10 – 6 = 210 · 0.86 · 0.24 = 0.0881…; P7 = 120 · 0.87 · (1 – 0.8)10 – 7 = 120 · 0.87 · 0.23 = 0.2013…; P8 = 45 · 0.88 · (1 – 0.8)10 – 8 = 45 · 0.88 · 0.22 = 0.3020… (самая большая вероятность!); P9 = 10 · 0.89 · (1 – 0.8)10 – 9 = 10 · 0.89 · 0.21 = 0.2684…; P10 = 1 · 0.810 · (1 – 0.8)10 – 10 = 1 · 0.810 · 0.20 = 0.1074…

Разумеется, P0 + P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10 = 1.