Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лаб раб 12.doc
Скачиваний:
24
Добавлен:
21.11.2019
Размер:
244.74 Кб
Скачать

Гальванизация

Гальванизация - лечебный метод, заключающийся в воздействии на ткани больного постоянным электрическим током напряжением 60 - 80В при плотности тока от 0,03 до предельно допустимой - 0,1 мА /см2.*

*(Естественно, что о сколько-нибудь значимом тепловом эффекте, при такой плотности тока говорить не приходится) (дем. закон Джоуля-Ленца).

Лечебный эффект достигается в основном за счет стимуляции обменных процессов вследствие электрокинетических явлений при прохождении постоянного тока. Этот метод лечения может применяться в тех случаях, когда интенсификация обменных процессов может привести к желаемому результату - отеки, нарушения водно-солевого обмена и др. Кроме того, в зависимости от места приложения электродов, воздействие может передаваться рефлекторно по нервным тканям на внутренний орган, в котором происходит изменение обменных процессов или функционального состояния.

Прохождение постоянного тока в цепи, содержащей раствор электролита, сопровождается явлениями, происходящими на поверхности контактных электродов или в растворе их окружающем. Эти явления называются электрохимической поляризацией. К ним относятся: электролиз растворенного вещества; реакции между продуктами электролиза и веществом электрода или растворителя (водой); образование местных пространственных зарядов и т. п. Несложно увидеть, что продукты электролиза, содержащихся в тканях ионов натрия и хлора у отрицательного электрода, в результате вторичных реакций, могут образовать едкую щелочь (NaOH), а у поверхности положительного - соляную кислоту (HCl). Эти вещества обладают прижигающим действием. Поэтому при любых условиях (включая и эксперименты на животных) нельзя при действии постоянным током металлические электроды накладывать непосредственно на поверхность тела!

Чтобы этого избежать, под электрод (между электродом и кожей) обязательно должна помещаться прокладка из ткани, смоченной изотоническим раствором - 0.9% р-р NaCl.

Лечебный электрофорез

Гальванизацию при необходимости совмещают с введением в ткани, при помощи постоянного тока, лекарственных веществ, образующих в растворе ионы. Эта процедура называется лечебным электрофорезом.

Для проведения электрофореза прокладки, помещаемые под электроды, смачивают раствором лекарственного вещества. Из прокладки под положительным электродом вводят в ткани организма положительные ионы металлов и частицы сложных соединений, под отрицательным электродом - кислотные радикалы, отрицательные ионы и частицы сложных соединений.

На рис. 4 показана модель биологической ткани, включающая в себя электропроводные ткани организма, содержащие раствор NaCl, прокладки (П), смоченные раствором CaCl2 и KJ, и электроды (Э). Стрелками показано движение ионов и накопление их у тканевых перегородок - поляризационные явления.

П Е0 П

Са+ Na+

Na+ J-

Са+ Р(t) J-

J-

Сl- Cl-

ЭA CaCl2 KJ ЭK

Ионы, скапливающиеся у мембран

Рис. 4.

- положительно заряженный ион; - отрицательно заряженный ион;

П – прокладка под электрод; Э – электрод; Р(t) – вектор поляризации среды.

У поверхности отрицательного электрода будет происходить нейтрализация ионов калия, затем вторичная реакция с водой, с образованием водорода Н2 и едкой щелочи КОН, а также переход йода из прокладки через кожу в биологическую ткань и движение его к положительному электроду. Ионы , собирающиеся у поверхности положительного электрода, могут участвовать в образовании НСl, а ионы из прокладки будут уходить в ткань, направляясь к отрицательному электроду.

Время проведения процедуры электрофореза зависит от того, насколько быстро будут ионы проникать в ткань, т.е. от скорости их движения.

Согласно второму закону Ньютона, если бы на ион действовала только сила со стороны электрического поля (Fk=Eq), он двигался бы ускоренно, однако этого не происходит, так как при увеличении скорости растёт и сила сопротивления среды его движению (Fсопр=k). При равенстве сил Fk и Fсопр, ион будет двигаться равномерно с некоторой установившейся скоростью v0, которая может быть найдена, исходя из равенства Eq=kv0, откуда:

(3)

т. е. скорость движения будет пропорциональна напряженности электрического поля.

Коэффициент пропорциональности u называют подвижностью ионов. Из приведенных рассуждений понятно, что такая важная характеристика как подвижность, будет зависеть от свойств среды и иона (например, структуры или вязкости среды, температуры, формы иона, его заряда, величины его сольватной оболочки и др.). Следовательно, при лечебном электрофорезе скорость введения вещества будет неодинаковой при использовании разных лекарственных средств.

Величину подвижности ионов различного типа можно определить экспериментально. Так из формулы (3) видно, что подвижность иона в данной среде численно равна скорости его установившегося движения под действием поля единичной напряженности. При известной напряженности электрического поля, измерив среднюю скорость движения ионов 0, можно определить их подвижность, пользуясь выражением:

(4)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]