Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л Р СУЭП 1ч новая_(полная).doc
Скачиваний:
170
Добавлен:
26.03.2016
Размер:
2.27 Mб
Скачать

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет автоматики и вычислительной техники

Кафедра электропривода

и автоматизации промышленных установок

Моделирование электромеханических систем электропривода

Методические указания и лабораторный практикум для студентов дневного и заочного отделения

Специальность 140604 "Электропривод и автоматика промышленных установок и технологических комплексов"

Киров 2011

Печатается по решению редакционно-издательского совета Вятского государственного университета

УДК 621.31112 : 621.313

М 74

Рецензент: кандидат технических наук доцент каф. АТ В. И. Семёновых

Составитель: преподаватель кафедры ЭПиАПУ Д.В. Ишутинов

Подписано в печать Усл. печ. л. 2,5

Бумага офсетная. Печать копир Aficio 1022

Заказ № 340 Тираж 52 Бесплатно.

Текст напечатан с оригинал-макета, предоставленного составителем

610000, г. Киров, ул. Московская, 36.

Оформление обложки, изготовление – ПРИП ВятГУ

 Вятский государственный университет, 2011

ВВЕДЕНИЕ

Аналогия– это частное сходство двух объектов, которое может быть существенным или менее существенным. Существенность сходства зависит от уровня абстрагирования и определяется целью исследования.

Аналогии, отражающие реальный, объективно существующий мир, обладают наглядностью, а значит, упрощают рассуждения и помогают проводить эксперименты, уточняющие природу явлений. Такие аналогии называют моделями.

Модель– это объект-заменитель объекта оригинала, обеспечивающий изучение некоторых свойств оригинала.

Моделирование– это представление реального физического объекта его моделью для получения информации о важнейших свойствах и физических процессах, протекающих в нем, путем проведения экспериментов с его моделью.

В процессе моделирования модель выступает в роли самостоятельного объекта, позволяющие получить некоторые знания – результаты моделирования. Если они подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то модель считается адекватнойобъекту. На основании адекватных моделей могут исследоваться подобные объекты.

1. КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ

При разработке и проектировании современных электромеханических систем, представляющих собой сочетание электродвигателя, механической части электропривода и системы управления, возникает необходимость в решении сложных расчетных задач. Для этого во многих случаях прибегают к моделированию.

Виды моделирования можно классифицировать по различным критериям. С точки зрения типа модели и способа представления математического описания классификация представлена на рисунке 1.1.

Рисунок 1.1 – Классификация видов моделирования

Таким образом, моделирование может быть условно разделено на два основных вида: математическое и физическое.

Физическим моделированием называют проведение исследований на реальном объекте или его макете. При проведении экспериментов на реальном объекте различные характеристики исследуются на самом объекте или его части. Физическое моделирование может проводиться на объектах, работающих в нормальном режиме или в специальных режимах. Реальное моделирование является наиболее адекватным, но его возможности ограничены физическими, техническими и другими особенностями реальных объектов и систем.

Другим видом физического моделирования является моделирование на макете, которое применяется, в случае если эксперименты с реальным объектом затруднены, невозможны или опасны. Исследования с помощью макета проводятся на установках, которые обладают физическим подобием и сохраняют природу явлений в изучаемом объекте.

Физическое моделирование может протекать в реальном или произвольном масштабе времени. Наибольшую сложность и интерес представляет моделирование в реальном масштабе времени, позволяющее получить наиболее достоверные результаты исследований.

Математическое моделированиеможет проводиться при помощи аналитических методов исследования, а также с использованием аналоговых (АВМ) и цифровых (ЭВМ) вычислительных машин.

При использовании аналитических методов исследования можно получить в общем виде явные зависимости для искомых характеристик объекта. Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно для относительно простых систем, и связано с проведением трудоёмких расчётов. Даже в простейших случаях (для линейных систем) аналитическое моделирование не позволяет получить исчерпывающие результаты. При наличии в системе нелинейных элементов, переменных параметров и других усложняющих расчеты факторов возможности аналитических методов расчёта ещё более ограничены.

Современные вычислительные машины позволяют с достаточной точностью имитировать любые передаточные функции, нелинейные статические характеристики, произведения и частные. Вычислительные машины, а, следовательно, и модели бывают аналоговыми и цифровыми.

Под аналоговой модельюпонимается такая, которая описывается уравнениями, связывающими непрерывные величины. Решение дифференциальных уравнений в АВМ носит непрерывный характер. Реальный физический объект заменяется при аналоговом моделировании подобным физическим объектом. В АВМ в качестве такого объекта выступает решающий операционный усилитель. Основным преимуществом моделирования на АВМ является высокая наглядность модели и возможность подключения к модели других технических средств. Также применение АВМ может ускорить исследование достаточно простых систем. С другой стороны возникают проблемы связанные с настройкой сложных моделей; появляются погрешности, обусловленные дрейфом параметров АВМ и кусочной линеаризацией нелинейностей. Максимальная величина выходного напряжения решающего операционного усилителя в АВМ ограничена значением в сто вольт. Поэтому для всех переменных модели вводятся масштабные коэффициенты, в результате чего могут накапливаться дополнительные ошибки.

Под цифровой модельюпонимается модель, в которой решение уравнений и процессы, протекающие в ней, носят дискретный характер. Следовательно, все рассчитываемые величины определены в некоторые дискретные интервалы времени. Цифровая модель обладает меньшей физической наглядностью, однако лишена недостатков присущих аналоговой модели. Для проектирования цифровых моделей применяются современные средства вычислительной техники, а расчёт таких моделей основан на применении численных методов.

С помощью средств вычислительной техники математические модели могут исследоваться как прямым решением систем дифференциальных уравнений, так и на основе моделирования по структурным схемам.

В первом случае математическое моделирование заключается в численном решении системы дифференциальных уравнений, описывающей поведение исследуемого объекта. Такая модель не отражает реальной структуры физического объекта. В данном случае для расчета модели не нужно знание специализированных САПР, однако затрудняется понимание структуры реального физического объекта.

Во втором случае строится структурная модель, в которой элементы соединены в соответствии со структурой исследуемой системы. При использовании структурного метода модель системы представляется в виде моделей типовых динамических звеньев ТАР и нелинейных блоков, имитирующих работу отдельных физических узлов исследуемой системы. Применение структурных моделей позволяет при моделировании сохранить структуру исследуемого объекта, и поэтому на модели легко воспроизводится изменение параметров и структуры реального физического объекта, например, включение корректирующих устройств, выбор глубины обратных связей, изменение момента инерции механической части и жесткости механических характеристик.