Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Шпора по физике [1 семестр]4

.doc
Скачиваний:
73
Добавлен:
02.05.2014
Размер:
2.53 Mб
Скачать

10

Физический маятник – это твердое тело, способное совершать колебания под действием своей силы тяжести вокруг оси, не проходящей через центр тяжести тела. Эта ось называется осью качания.

M = - J E ; M = m g d * sinφ (где d – расстояние от центромасс до места крепления физического маятника) ; J E = - mgd sinφ ; E = d2 φ / dt (ст.2) ;

J * (d2 φ / dt (ст.2)) + mgd sinφ = 0 ; d2 φ / dt (ст.2) + (mgd / J) sinφ = 0 ;

Это дифференциальное уравнение, описывающее колебания физического маятника. При малых углах уклонения можно считать, что sinφ = φ радиан ;

(d2 φ / dt (ст.2)) + mgdφ / J = 0 ; Это дифференциальное уравнение описывает гармонические колебания, частота которых равна:

d2 S / dt (ст.2) + w0 (ст.2) S = 0 ; w0 (ст.2) = mgd / J ; w0 = корень (mgd / J) ;

T = 2ПИ / w0 = 2ПИ (корень J / mgd).

Если твердое тело представляет собой матерьяльную точку, подвешенную на невесомой, нерастяжимой нити и способную совершать колебания, то маятник будет математическом. J = md (ст.2) ; T = 2ПИ (корень md(ст.2) / mgd) = 2ПИ (корень d / g); T = 2ПИ (корень d / g) – период колебания математического маятника.

Малые колебания физического и математического маятника представляет из себя пример изохронных колебаний, т.е. колебаний, частота которых не зависит от амплитуды. В общем случае период колебаний физического маятника зависит от амплитуды: T = 2ПИ (корень J / mgd) * [1 + 1/2 (ст.2) sin (ст.2) (φ/2) + (1/2 * 3/4) (ст.2) sin (ст.2) (φ/2) + …]. А та формула дает погрешность не более 1,5% для углов отклонения, не превышающих 15 градусов.

Пружинный маятник. Рассмотрим колебания груза на пружине:

Fупр = - kx (закон Гука); ma = Fупр ; m * (d2 x / dt (ст.2)) = - kx ;

(d2 x / dt (ст.1)) + kx / m = 0 – это дифференциальное уравнение, описывающее колебания груза на пружине, жесткость которого равна k.

Частота этих колебаний: w 0 = (корень) k / m ;

Период: T=2ПИ (корень m / k)

11

Сложение скоростей.

Преобразования Лоренца позволяют получить:

Пример: Определить скорость фотона относительно Земли, если его испускает фонарик, находящийся на космическом корабле движущемся со скоростью V в направлении движения.

Относительно S`: U`x=c

Относительно наблюдателя в системе S:

Отсюда видно, что релятивистский способ сложения скоростей соответствует 2-му постулату специальной теории относительности: Скорость света во всех инерциальных системах отсчета одинакова.

§7.2 Импульс и энергия в релятивистской динамике.

Время, масса и длина – относительные величины в механике. Значит, масса зависит от того, в какой системе отсчета она была измерена.

При больших скоростях масса возрастает.

m0 – масса покоя, т.е. масса измеренная относительно той системы отсчета, в которой тело покоится =>

Полную энергию можно выразить через массу покоя:

- энергия покоя.

Длина свободного пробега – расстояние между двумя последовательными соударениями молекул в газе.<λ> Достаточно большой круг явлений может быть описан с помощью простейшей механической модели, согласно которой молекулы представлены в виде шариков, которые испытывают упругие соударения между собой и стенками сосуда. Минимальное расстояние, на которое могут сблизиться молекулы называется эффективным диаметром и принимается за диаметр шариков.

Круг площадью d2 - называется эффективным сечением. Найдем среднее число соударений которые испытывает молекулы при хаотическом движении <Z>; Пусть все молекулы покоятся и движется только одна. За 1 сек. молекула пройдет расстояние равное <>

При этом она столкнется со всеми молекулами которые находятся в пределах эффективного сечения т.е. находится в цилиндре высотой <> и площадью сечения равной d2 если n – концентрация молекул, то <Z>=nV=nd2<>

Учет движения всех частиц приведет к:

Средний путь за 1 сек. т.е. длина свободного пробега:

12

Моментом импульса (моментом количества движения) матерьяльной точки относительно оси называется векторная величина L = r * P ; где все величины – векторы ; r – расстояние от оси вращения до этой точки. Импульс точки: P = mv. Моментом силы M называется величина M=r *F

Моментом импульса твердого тела относительно оси является

L = сумма ri Pi ; |L| = |r | |P| sinАЛЬФА ; Рассмотрим случай, когда АЛЬФА=ПИ/ 2: L = сумма mi vi ri = w сумма mi vi (ст.2) = J w; L = J w ;

Продефференцируем это выражение по времени: dL / dt = J dw/dt = J центромасс = M ; dL / dt = M ; Если M= 0, то dL / dt = 0  L = const

Это закон сохранения импульса!!! --- Если на систему тел не действует момент силы M или равнодействующая всех сил равна нулю, то момент импульса этой системы остается постоянным. Закон сохранения момента импульса является фундаментальным законом физики. Он справедлив не только в классической механике, но и в релитивистской и в квантовой механике. Закон сохранения момента импульса связан с изотропностью пространства – пространство обладает одинаковыми свойствами во всех направлениях.

Уравнение состояния идеального газа. Параметры состояния связаны друг с другом. Уравнение состояния устанавливает связь между параметрами состояния. В простейшем случае состояние термодинамической системы описывается тремя параметрами – P, V, T.

F (P, V, T) = 0 ; Идеальный газ – это модель, которая во многих случаях с достаточно хорошей точностью описывает поведение газа. Идеальный газ – это газ, молекулы которого имеют пренибрежительно малый объем и не взаимодействуют на расстоянии. Молекулы идеального газа взаимодействуют друг с другом только в момент соударения. Причем соударение считается абсолютно упругим. Эти предположения (отсутствие взаимодействия, абсолютно упругие соударения) позволяют утверждать, что внутренняя энергия идеального газа определяется суммой кинетических энергий отдельных частиц, причем эта кинетическая энергия не переходит ни в какие другие виды энергии. Опытным путем было установлено, что параметры состояния газа удовлетворяют условию PV / T = const ; зависящему от количества вещества ; PV / T = МЮ R ; (R – универсальная газовая постоянная = 8,31 дж/моль к) ; PV = МЮ RT – уравнение Менделеева-Клайперона. МЮ = m / μ ; 1 моль любого газа при нормальных условиях занимает ; R = k Na ; PV = МЮ Na kT ; МЮ Na = N ; PV = NkT ; P = N k T/ V ; N0 = N/ V – число молей в единице объема.

P = n0 k Tдругая форма записи этого уравнения.

Дано: m1=3 кг; m2=3 кг; M1=4010-3 кг/моль; M2=2810-3 кг/моль;cp-?

Решение: Q=cvmT; m=m1+m2; Q=Q1+Q2; Q1=cv1m1T;

Q2=cv2m2T; cvmT=cv1m1T+cv2m2T; cv=(cv1m1+cv2m2)/(m1+m2);

cp=(cp1m1+cp2m2)/(m1+m2); i1=6; i2=5; cp1=((i1+2)/2)(R/M1);.

cp2=((i2+2)/2)(R/M2); cp=(R/2)(((i1+2)m1)/M1+((i2+2)m2)/M2)

1/(m1+m2);

13

Релятивистский импульс. Уравнение движения релятивистских частиц

Законы сохранения должны быть соблюдены во всех инерциальных системах отсчета, т.е. должны быть имвариантны по отношению к преобразованиям Лоренца. Если определить импульс тела как P = mv (как в Нбюоновской механике), то можно показать (рассмотрим например неуправляемые соударения частиц), что в релятивистском случае при определении P, закон сохранения не будет имвариантен по отношению к преобразованиям Лоренца. Можно показать, что закон сохранения импульса будет имвариантен по отношению к преобразованиям Лоренца, если определить импульс как P = m0 v / (корень 1 – v (ст.2) / c (ст.2)).

Величина m0 – масса покоя частиц. Если через m обозначить величину

m = m0 / корень…, то импульс частицы будет записан также как в Ньютоновской механике P = mv , где m – релятивистская масса частиц. Видно, что релятивистская масса частиц изменяется при изменениии скорости ее движения. Из 2х возможных (в Ньют. мех.) формулировок 2го закона Ньютона (F=ma ; dP / dt = F) будет справедлива 2ая.

Второй закон будет иметь вид: (d/dt) * (m0 v / корень…) = F – основной закон в рел. механике. В релятивистском случае масса утрачивает пропорцианальность между силой и ускорением. В релятивистской механике сила и ускорение (в отличие от Ньютоновской механики) не являются имвариантными по отношению к преобразованиям Лоренца, т.е. изменяются при переходе от одной инерциальной системы отсчета к другой. Кроме этого сила F и ускорение a оказываются неколлинеарными

Вычисление момента инерции.

Теорема Штейнера: Момент инерции тонкого стержня

dJ=dmx2

=m/ L – линейная плотность

dm=dx

dJ= x2dx

Моменты инерции тел:

1) Материальная точка J=mR2

2) Обруч J=mR2

3) Диск (цилиндр) J=1/2mR2

4) Шар J=2/5mR2

5) Тонкий стержень J=1/12mL2

6) Полый цилиндр J=1/2(R12+R22)

Если известен момент инерции относительно оси, проходящей через центр инерции J0 , то момент инерции J относительно другой оси, параллельной первой, можно вычислить по формуле J=J0 + md2

14

Упругими или механическими волнами называют процесс распространения в среде. Акустическими или звуковыми называют колебания с частотой - =(16-20000)Гц.

<16 – инфразвук.

>20000 – ультразвук.

Распространение волн не сопровождается переносом вещества. При этом частицы совершают гармонические колебания относительно центра равновесия. Если колебания происходят  направлению скорости волны, то они – поперечные, если || - то продольные. Фронт волны – геометрическое место точек, до которого доходят колебания источника.

§10.2 Уравнение бегущей волны.

Бегущие волны – волны переносящие энергию.

Уравнение бегущей волны – функция, показывающая положение частиц от времени.

S(x,t)

S(t)=Acos(t)

В некотором направлении X, при скорости волны V, колебания точки на расстоянии x будут запаздывать на Δt. Поэтому смещение будет равно:

S(x,t)=Acos(ω(t–Δt))=Acos(ω(t–x/V))

Расстояние, которое проходит волна за один период, называют длинной волны.

Реальные газы. При движении молекулы вдали от стенок сосуда, в котором заключен газ, на нее действуют силы притяжения соседних молекул, но равнодействующая всех этих сил в среднем равна нулю, т.к. молекулу со всех сторон окружает в среднем одинаковое число соседей. При приближении некоторой молекулы к стенке сосуда все остальные молекулы газа оказываются по одну сторону от нее и равнодействующая всех сил притяжения оказывается направленной от стенки сосуда внутрь газа. Это приводит к тому, что уменьшается импульс, передаваемый молекулой стенке сосуда. В результате давление газа на стенки сосуда уменьшается по сравнению с тем, каким оно было бы в отсутствие сил притяжения между молекулами: p = p идеального + delta p. Вместо уравнения идеального газа получаем p + delta p = nkT ; delta p = a/V(ст.2);

Где a – постоянная, зависящая от вида газа. Для одного моля газа получаем p+a/V(ст.2) = R T / V ; Поправка: при любых давлениях, объем газа не может стать равным нулю. Уравнение Ван-дер-Ваальса:

(p + a / V (ст.2)) (V - b) = RT, где b – так называемый “запрещенный объем”

Учет межмолекулярных взаимодействий был произведен впервые голландским физиком Ван-дер-Ваальсом. При этом он исходил из простой модели, которая была основана на следующих положениях:

1)Молекулы газов представляют собой шары с эффективным диаметром.

2)Между молекулами существуют только силы притяжения

3)Силы отталкивания учтены введением эффективного диаметра.

Учет собственного объема молекулы

приводит к тому, что «Свободный» молярный объем в сосуде уменьшается по сравнению с идеальным газом на величину b,

, где b – постоянная Ван-дер-Ваальса.

Наличие сил притяжения между молекулами реального газа приводит к тому, что давление становится меньше на некоторую величину p*.

Таким образом

Величина P* согласно теории Ван-дер-Ваальса обратно пропорциональна квадрату объема:

, т.о. уравнение состояния имеет вид:

Для разреженных газов размерами атомов можно пренебречь. Уравнение Ван-дер-Ваальса переходит в обычное уравнение Менделеева-Клапейрона.

15

Уравнение Ван-дер-Ваальса.

Процесс распространения колебаний в сплошной среде называется волновым процессом или волной. Стоячая волна энергии не переносит. Стоячие волны образуюся в результате интерференции (наложения) 2х одинаковых, противоположных по направлению волн. Энергия, переносимая волной количественно характеризуется вектором плотности потока энергии, вектором Умова.

y = A sin (wt + φ0)

Колебания в точку, расположенную на расстоянии X от начала координат приходит с запозданием на время x/v и среднее колебание в точке, с координатами X будет описываться выражением:

y (x, t) = A sin [w (t – x/v) + φ0] ; w (t – x/v) = wt – wx/v ; w = 2ПИ/ T ;

λ = vT  T = λ / v ; w = 2ПИ v/ λ ;

X = 2ПИ / λ – ВОЛНОВОЕ ЧИСЛО (волновой вектор) – вектор, направление которого совпадает с направлением движения волны.

y (x, t)= Asin (wt – kx + φ0) – уравнение плоской синусоидальной бегущей волны, распространяющейся в положении направления оси X. Учитывая формулу Эйлера, эту плоскую волну можно записать в виде

y (x, t) = A e (ст. i (wt – kx + φ)) ; sinx(t) = A sin (wt – kx + φ0).

Фазовая скорость волны – это скорость распространения точки с постоянной фазой – Ф = const ; v = dx / dt ; Дифференцируем Ф и получаем:

dФ = d (wt – kx – φ0) = wdt – kdx  dx / dt = w/k – фазовая скорость волны!

Стоячая волна энергии не переносит. Стоячие волны образуюся в результате интерференции (наложения) 2х одинаковых, противоположных по направлению волн. Энергия, переносимая волной количественно характеризуется вектором плотности потока энергии, вектором Умова.

y = A sin (wt + φ0)

Колебания в точку, расположенную на расстоянии X от начала координат приходит с запозданием на время x/v и среднее колебание в точке, с координатами X будет описываться выражением:

y (x, t) = A sin [w (t – x/v) + φ0] ; w (t – x/v) = wt – wx/v ; w = 2ПИ/ T ;

λ = vT  T = λ / v ; w = 2ПИ v/ λ ;

X = 2ПИ / λ – ВОЛНОВОЕ ЧИСЛО (волновой вектор) – вектор, направление которого совпадает с направлением движения волны.

y (x, t)= Asin (wt – kx + φ0) – уравнение плоской синусоидальной бегущей волны, распространяющейся в положении направления оси X. Учитывая формулу Эйлера, эту плоскую волну можно записать в виде

y (x, t) = A e (ст. i (wt – kx + φ)) ; sinx(t) = A sin (wt – kx + φ0).

Фазовая скорость волны – это скорость распространения точки с постоянной фазой – Ф = const ; v = dx / dt ; Дифференцируем Ф и получаем:

dФ = d (wt – kx – φ0) = wdt – kdx  dx / dt = w/k – фазовая скорость волны!

16

Постулаты специальной теории относительности. Специальная теория относительности также как и Ньютоновская механика предполагает, что время однородно, а пространство однородно и изотопно. В основе специальной теории относительности лежат 2 постулата, которые являются результатом эксперементально установленных закономерностей.

1 постулат обобщает принцип механической независимости Галилея на все физические явления. В любых инерциальных системах отсчета все физические явления при одних и тех же условиях протекают одинакова.

2 постулат выражает принцип имвариантности скорости света. Скорость света в вакууме не зависит от скорости движения источника. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме является предельной скоростью в природе.

Эйнштейн пересмотрел классические свойства пространства и времени. Он предположил, что время в различных инерциальных системах отсчета течет неодинаково. Пространство и время в теории относительности рассматривается совместно, а не обособленно, как в Ньютоновской механике. Они образуют единое 4х-мерное пространство и время. Возьмем в таком 4х-мерном пространстве и времени декартовую систему координат с осями (x, y, z, ct). Положение тела в таком 4х-мерном пространстве изображается точкой с координатами (x, y, z, ct). Эта точка называется мировой точкой. Со временем она меняет свое положение, описывая в 4х-мерном пространстве некоторую линию, называемую мировой линией. Даже в том случае, если тело остается неподвижным в обычном 3х-мерном пространстве, его мировая точка перемещается вдоль оси ct.

Выберем 2 инерциальные системы отсчета k (x, y, z, t) и k’ (x’, y’, z’, t’). Будем считать, что система отсчета k’ движется относительно системы k со скоростью v, направленной вдоль оси OX. Пусть в начальный момент времени начала этих систем отсчета совпадают. В этот момент из начала отсчета вдоль оси OX излучается световой импульс. За время t в системе отсчета k он дойдет до точки ; x = ct ; x’ = ct’

ГАММА (x - vt) = x’ ; ГАММА (x’ – vt’) = x ;

ГАММА (ct - vt) = ct’ УМНОЖАЕМ НА ГАММА (ct + t) = ct ; ПОЛУЧАЕМ ГАММА (ст.2) (c (ст.2) – v (ст.2)) = c (ст.2);

ГАММА = 1 / [ (корень) 1 – v(ст.2) / c(ст.2) ] ;

В k : x = (x’ + vt’) / (корень) (1-v(ст.2)/c(ст.2)) ; y = y’ ; z = z’

В k’ : x = (x + vt) / (корень) (1-v(ст.2)/c(ст.2)) ; y = y’ ; z = z’

Используем значение ГАММА из предыдущего выражения:

t = (t’ + x’ v/c (ст.2)) / ((корень) 1 – v(ст.2)/ c (ст.2))

t’ = (t + x v/c (ст.2)) / ((корень) 1 – v(ст.2)/ c (ст.2))

--- ПРЕОБРАЗОВАНИЯ ЛОРЕНЦА!!!!!

Они связывают координаты и время в различных инерциальных системах отсчета. В приделе при c  к бесконечности, преобразования Лоренца переходят в преобразования Галилея. Различие в течении времени в разных инерциальных системах отсчета обусловлено существованием предельной скорости взаимодействий. При малых скоростях движений v0 преобразования Лоренца переходят в преобразования Галилея.

Вращение тела осуществляется тангенсальной составляющей силой, действующей на тело. Эта же сила совершает работу, величина которой на dS определяется соотношением:

dA=FdS

учитывая dS=dR, получаем dA=FRd

dA=Md

(при М-const), то результирующая работа определяется соотношением:

P=dA/dt=M

Кинетическая энергия вращательного тела равна сумме кинетических энергий его частиц:

Если тело участвует одновременно в поступательном и вращательном движении, то скорость его точки будет складываться из скорости центра масс и линейной скорости:

i = C +i (C – поступательная скорость центра, I – линейная скорость вращения)

17

Постоянное тепловое хаотическое движение приводит к непрерывному перемещению молекул. При этом если в газе возникают какая либо неоднородность то со временем все неоднородности выравниваются. Эти процессы выравнивания не являются хаотическими, а характеризуются определенной направленностью. Это связано с перемещением характеристик газа от областей с избытком к областям с недостатком. Существует 3 типа неоднородностей:

1)Неоднородность плотности (концентрации);

2)Неоднородность температуры (энергии);

3)Неоднородность импульса (перемещения) отдельных слоев движения газа;

Вязкость - Явление вязкости связано с возникновением сил трения между слоями жидкости или газа, которые перемещаются параллельно друг другу, но с разными скоростями

Консервативные и неконсервативные силы.

Сила F, действующая на матерьяльную точку называется консервативной или потенциальной, если работа этой силы по перемещению этого тела из состояния 1 в состояние 2 не зависит от формы траектории движения, а зависит только от начального и конечного положения тела. Для консервативной или потенциальной силы работа по перемещению тела по замкнутой траектории равна нулю.

A = (интеграл с кружком в центре) Fdt=0 – условие потенциальной силы.

В противном случае сила называется диссепативной. Дессипативная сила зависит от скорости точек и совершает отрицательную работу.

N = dA / dtмгновенная мощность.

Работа совершается каждый раз, когда энергия одного тела передается другому или преобразовывается из одного вида в другой. Согласно теореме о кинетической энергии, работа результирующих сил приводит к изменению кинетической энергии:

А=K2+K1= K

Все силы можно разделить на 3 группы:

1) Внешние

2) Неконсервативные

3) Консервативные

Тогда АВН+AН.К+AК=K

Учитывая, что работа консервативных сил может быть выражена через изменение потенциальной энергии, получаем соотношение:

АВН+AН.К=K+U=E – полная энергия

Таким образом видно, что если система тел замкнута (AВН =0) и отсутствуют неконсервативные силы (AН.К =0), то EПОЛН =const, K+U=const; K1 + U1 = K2 + U2 ;

При наличии неконсервативных сил механическая энергия не сохраняется. При этом она переходит во внутреннюю энергию теплового хаотического движения. Если обозначить AН.К= -UВНУТР, то общий вид соотношения: АВН =K+U+UВН. Из последнего соотношения видно, что если система замкнута (АВН =0), то полная энергия остается неизменной:

K+U+UВН =0, K+U+UВН =const

Замкнутая система тел может совершать работу над внешними телами. При этом её полная энергия уменьшается:

АВН = - АВН` (АВН – Работа внешних сил; АВН`- работа над внешними телами)

Тогда, если система совершает положительную работу над внешними телами, то изменение полной энергии отрицательно. Последнее утверждение свидетельствует о том, что вечный двигатель первого рода невозможен.

18

Постулаты специальной теории относительности. Специальная теория относительности также как и Ньютоновская механика предполагает, что время однородно, а пространство однородно и изотопно. В основе специальной теории относительности лежат 2 постулата, которые являются результатом эксперементально установленных закономерностей.

1 постулат обобщает принцип механической независимости Галилея на все физические явления. В любых инерциальных системах отсчета все физические явления при одних и тех же условиях протекают одинакова.

2 постулат выражает принцип имвариантности скорости света. Скорость света в вакууме не зависит от скорости движения источника. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме является предельной скоростью в природе.

Эйнштейн пересмотрел классические свойства пространства и времени. Он предположил, что время в различных инерциальных системах отсчета течет неодинаково. Пространство и время в теории относительности рассматривается совместно, а не обособленно, как в Ньютоновской механике. Они образуют единое 4х-мерное пространство и время. Возьмем в таком 4х-мерном пространстве и времени декартовую систему координат с осями (x, y, z, ct). Положение тела в таком 4х-мерном пространстве изображается точкой с координатами (x, y, z, ct). Эта точка называется мировой точкой. Со временем она меняет свое положение, описывая в 4х-мерном пространстве некоторую линию, называемую мировой линией. Даже в том случае, если тело остается неподвижным в обычном 3х-мерном пространстве, его мировая точка перемещается вдоль оси ct.

Выберем 2 инерциальные системы отсчета k (x, y, z, t) и k’ (x’, y’, z’, t’). Будем считать, что система отсчета k’ движется относительно системы k со скоростью v, направленной вдоль оси OX. Пусть в начальный момент времени начала этих систем отсчета совпадают. В этот момент из начала отсчета вдоль оси OX излучается световой импульс. За время t в системе отсчета k он дойдет до точки ; x = ct ; x’ = ct’

ГАММА (x - vt) = x’ ; ГАММА (x’ – vt’) = x ;

ГАММА (ct - vt) = ct’ УМНОЖАЕМ НА ГАММА (ct + t) = ct ; ПОЛУЧАЕМ ГАММА (ст.2) (c (ст.2) – v (ст.2)) = c (ст.2);

ГАММА = 1 / [ (корень) 1 – v(ст.2) / c(ст.2) ] ;

В k : x = (x’ + vt’) / (корень) (1-v(ст.2)/c(ст.2)) ; y = y’ ; z = z’

В k’ : x = (x + vt) / (корень) (1-v(ст.2)/c(ст.2)) ; y = y’ ; z = z’

Используем значение ГАММА из предыдущего выражения:

t = (t’ + x’ v/c (ст.2)) / ((корень) 1 – v(ст.2)/ c (ст.2))

t’ = (t + x v/c (ст.2)) / ((корень) 1 – v(ст.2)/ c (ст.2))

Уравнения Максвелла не инвариантны относительно законов Галилея. Т.е. в разных системах отсчета согласно преобразованиям Галилея законы электродинамики должны были бы описываться различными уравнениями. => Либо Максвелл не прав, либо Галилей не точен.

Если вместо преобразований Галилея использовать преобразования Лоренца, то инвариантность законов природы выполняется как для механики, так и для электродинамики.

Из приведенных выражений видно, что при , преобразования Лоренца переходят в преобразования Галилея. На основе новых данных Эйнштейн построил специальную теорию относительности в основе которой лежат 2 постулата:

1) Всеобщий принцип относительности – все законы природы одинаковы во всех инерциальных системах отсчета.

2) Скорость света c в вакууме одинакова во всех инерциальных системах отсчета (с=3·108 м/с)

§6.3 Сокращение длинны.

Пусть некоторый предмет находится в системе S`. Наблюдатель в системе S` измеряя длину корабля получит:

Наблюдателю в системе S будет казаться, что все предметы в системе S` сокращаются в направлении движения.

Следствие: Расстояние между точками относительно. В соответствии с принципом относительности системы S и S` равноправны, поэтому наблюдателю находящемуся в системе S` также будет казаться, что все предметы в системе S сжимаются => расстояние между точками относительно.

§6.4 Удлинение промежутков времени.

Пусть в системе S с координатой x0 произошло 2 события t1 и t2 (t1-включили прожектор, t2-выключили).

t=t2 – t1

Наблюдатель в системе S` измеряя этот промежуток времени по своим часам, получит величину:

Наблюдателю в системе S` будет казаться, что движущиеся относительно него в системе S процессы замедляются. Наименьшее значение имеет промежуток времени в той системе отсчета, в которой события происходят и относительно которой часы находятся в покое. Это время называют собственным.

Следствие: Относительность понятий одновременности.

Задача: Две молнии ударили в вагон одновременно с позиции наблюдателя в системе S.

(L, t=t2–t1=0)

Значит наблюдатель в системе S` сначала увидит молнию передней части вагона и потом задней.

Распределения Больцмана. Основное уравнение МКТ и максвелские распределения молекул по скорости были получены предположением, что молекулы равномерно распределены по объему и все направления движения молекул равномерно распределены по объему и все направления движения молекул равновероятны. Такие условия могут быть реализованы только в том случае, если на молекулы не действуют никакие внешние силовые поля. Однако молекулы любого газа в земных условиях находятся в потенциальном гравитационном поле Земли, что приводит к нарушению равномерного распределения молекул по объему. P = pgh – давление в жидкости ; dP = - pgdh – т.к. с увеличением высоты давление уменьшается.

PV = mRT / μ => p = m / V = Pμ / RT ; dP = - Pμ g dh / RT = P m0 g dh / kT ; dP/ P = - m0 g dh / kT ; Проинтегрируем это выражение:

(интеграл P0 - P) dP / P = - (m0 g / kT) (интеграл 0 - h) dh ; ln (P / P0) = - (m0 gh / kT) ; P = R0 e (ст. m0 gh / kT) ; P = P0 e (ст. – μ n / RT) ; Это выражение описывает распределение частиц по высоте в гравитационном поле. m0 gh = Wп, поэтому n = n0 e (ст. – Wп / kT). Это и есть распределения Больцмана. Оно описывает распределение частиц по высоте в гравитационном поле, а не только в гравитационном поле Земли. Это распределение приемлемо к частицам, находящимся в состоянии заотического теплового движения.

Дано: m=1кг; p=8104 Па; =4 кг/м3; U-?

Решение: U=5/2m/MRt ; pV=m/M RT  p=RT/M=p/ ;

U= 5/2mp/=2.5104/4=5104 Дж

Дано: m1=m2=m; v1=v2=v; T2/T1-? Решение: T=(mv2)/2+(Jw2)/2; w=v/R;

J1=(2/5)mR2; J2=(1/2)mR2; T1=(mv2)/2+(2/5)mR2(v2/(2R2))=(7/10)mv2;

T2=(mv2)/2+(1/2)mR2(v2/(2R2))=(3/4)mv2; T2/T1=1.07