Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термодинамика Реальных Процессов.doc
Скачиваний:
112
Добавлен:
01.11.2018
Размер:
5.4 Mб
Скачать

2. Термодинамическая пара, или принцип самофункционирования.

Термодинамическая пара - это удивительно интересное и важное явление с колоссальным набором всевозможных свойств, превосходящим все то, что было сказано ранее о трех первых явлениях ряда; ей посвящена монография [21]. Термодинамическая пара в общем случае представляет собой замкнутую цепь, состоящую из двух или более разнородных проводников, места контакта (спаи) которых находятся при различных значениях какого-либо интенсиала. В спаях образуются неодинаковые скачки второго интенсиала, что вызывает круговую циркуляцию сопряженного со вторым интенсиалом вещества. Этот круговой процесс сопровождается поглощением теплоты диссипации в одном спае и выделением в другом. В проводниках -возникают различные линейные эффекты, обусловленные взаимным влиянием различных степеней свободы системы [21, с.16].

Например, в термоэлектрической паре, состоящей из двух разнородных металлов, под влиянием разности температур между спаями происходит круговая циркуляция носителей электрического вещества (эффект Зеебека). Этот процесс сопровождается поглощением теплоты диссипации в одном спае и выделением в другом (эффект Пельтье). В общем случае вдоль проводника при наличии на его концах разностей температур и потенциалов наблюдаются линейные эффекты Томсона, Джоуля-Ленца, упомянутый выше новый и т.д. Эффекту Томсона соответствует поглощение или выделение количества тепла диссипации, пропорциональное силе тока в первой степени, эффекту Джоуля-Ленца - выделение количества тепла, пропорциональное силе тока в квадрате, новому линейному - поглощение или выделение количества тепла, пропорциональное силе тока в кубе. Последний эффект обусловлен преодолением носителем квантов вермического и электрического веществ одновременно разностей температур и электрических потенциалов [18, с.296, 316; 21, с.309, 312].

В общем случае в термодинамической паре могут наблюдаться многочисленные другие эффекты, связанные с конкретными термодинамическими свойствами проводников и степеней свободы, которыми они располагают. Эти эффекты столь же специфичны, сколь специфичны сами степени свободы, поэтому они должны рассматриваться особо, применительно к каждой конкретной термодинамической паре. Например, в проводниках типа капилляров происходит разделение смеси газообразных и жидких веществ на простые составляющие, что широко применяется на практике. Мембраны и полупроницаемые перегородки - это типичные термодинамические пары, без которых не обходится ни один живой организм. В работе [21] описаны десятки других всевозможных пар: химикоэлектрические (гальванические элементы и электрические аккумуляторы), термофильтрационные, электрофильтрационные, диффузионно-фильтрационные, поверхностно-фильтрационные, магнитофильтра-ционные, вибрационно-фильтрационные, термоповерхностно-фильтрационные, термоэлектрофильтрационные, термоповерхностно-диффузионно-фильтрационные, термодиффузионные, электродиффузионные и т.д.

Очень экзотично выглядят упомянутые выше самофункционирующие термофазовые, термоэлектрические и хронально-химические пары (см. гл. XXIII и XXIV). Закон самофункционирования - это главный специфический закон явления термодинамической пары. С термодинамической пары начинаются также многие другие специфические законы, например определяющие круговой процесс, управление с обратной связью и т.д.

Суть кругового процесса заключается в том, что система, претерпевая ряд изменений своего состояния, вновь возвращается в исходное. При одной степени свободы никаких преобразований энергии в окружающей среде не наблюдается, так как изменения состояния в прямом и обратном направлениях происходят по одному и тому же пути. При двух и более степенях свободы пути прямого и обратного изменений состояния могут не совпадать между собой за счет изменения второй степени свободы. В результате происходят взаимные преобразования первой и второй форм энергии. В термодинамической паре циркулирующее вещество испытывает именно такое круговое изменение своего состояния. Круговые процессы чрезвычайно широко распространены в природе и используются в технике. Например, по этому принципу работают все тепловые и иные двигатели. Круговые процессы были применены также при осуществлении устройств типа БМ (см. гл. XXI и XXII).

Закон управления с обратной связью рассматривается в кибернетике. Принципиальной особенностью кибернетических систем является наличие обратной связи между выходом из исполнительного органа и управляющим устройством. Например, в самофункционирующей термоэлектрической паре ПД-18, отапливающей помещение, изменение температуры окружающей среды приводит к изменению температуры внешнего спая. Эффект передается на внутренний спай, его температура и тепловой поток изменяются, круговой процесс возвращает информацию на внешний спай, его температура корректируется. Так происходит саморегулирование интенсивности теплообмена между средой и помещением. Другой пример: центробежный регулятор Уатта получает информацию о частоте вращения вала паровой машины и в соответствии с этим прикрывает или открывает заслонку на паропроводе, регулируя этим частоту [18, с.361; 21, с.274]. Чрезвычайно широко процессы управления с обратной связью представлены в живом организме, обществе и т.д.

Термодинамической паре присуще также огромное множество других, более частных специфических законов, но я их здесь рассматривать не буду [ТРП, стр.482-484].