Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термодинамика Реальных Процессов.doc
Скачиваний:
112
Добавлен:
01.11.2018
Размер:
5.4 Mб
Скачать

Глава VIII. Второе начало от.

1. Вывод уравнения.

Приступим теперь к систематическому анализу основного уравнения ОТ для ансамбля простых явлений. Это позволит обнаружить у некоторых из введенных характеристик многие важные свойства, вывести дополнитель­ные уравнения и сформулировать новые законы. Такое углуб­ление содержания основных понятий теории будет осущест­вляться в ходе всего последующего изложения.

Обратим внимание на одну чрезвычайно важную особен­ность процесса переноса вещества через контрольную поверх­ность. При этом будет выявлено второе замечательное свойство природы, которое позволяет существенно расширить наши представления о веществе и его мере Е . Для количественного определения этого свойства выведем соответствующее диф­ференциальное уравнение.

Предположим, что система 2 мысленно отделена от окру­жающей среды 1 оболочкой 3 толщиной dx (рис. 2, а). Свойства системы, оболочки и окружающей среды будем считать одина­ковыми. Следствием этой одинаковости, как мы убедимся в дальнейшем, является то, что кривая распределения данного интенсиала Ρ не претерпевает изломов или скачков на поверх­ностях соприкосновения оболочки с системой и окружающей средой. Предположим далее, что из окружающей среды в оболочку входит определенное количество вещества, мерой которого служит экстенсор dEс . Одновременно из оболочки в систему выходит то же вещество в количестве dE . Опишем этот процесс с помощью первого начала, причем уравнение составим применительно к оболочке.

Для простоты будем считать, что система, оболочка и среда обладают одной сопряженной степенью свободы (n = 1). В этих условиях общее уравнение (31) первого начала приобретает вид

dU = PcdEc + PсиdE , (47)

где Рс - интенсиал поверхности окружающей среды; Рси - интенсиал поверхности системы.

Если теперь толщину dx устремить к нулю, то оболочка превратится в обычную контрольную поверхность. При этом изменение энергии оболочки

dU = 0 , (48)

так как геометрическая поверхность не способна накапливать или отдавать энергию, а интенсиалы Рс и Рси , станут равными интенсиалу Рп контрольной поверхности, то есть

Рс = Рси = Рп (49)

ибо величина Рп является общей для системы и среды (рис. 2, а и б). С помощью соотношений (48) и (49) выражение (47) преобразуется к виду

dE + dEc = 0 (50)

Это и есть искомое уравнение. Аналогичное равенство можно составить для любой сопряженной степени свободы системы и окружающей среды. Следовательно, уравнение (50) в общем случае справедливо для произвольного числа n [ТРП, стр.107-108].

2. Второе начало от, или закон сохранения количества вещества.

Дифференциальное уравнение (50) напоминает соответ­ствующее уравнение для закона сохранения энергии (46); оно говорит о том, что в процессе взаимодействия системы и окружающей среды количество вещества, вышедшего (или вошедшего) из окружающей среды через контрольную поверх­ность, равно количеству вещества, вошедшего (или вышедшего) в систему через ту же поверхность. Это значит, что общее количество вещества в системе и окружающей среде остается неизменным: на сколько уменьшается количество вещества в окружающей среде, на столько же увеличивается это коли­чество в системе и наоборот.

Следовательно, равенство (50) выражает закон сохранения количества вещества, или, короче, закон вещества. Этот закон является вторым законом природы, относящимся к началь­ному шагу эволюции явлений, поэтому его можно назвать вторым началом ОТ.

Второе начало выражает идею сохранения количества вещества. Оно справедливо для любого вещества, включая все известные, перечисленные в параграфе 2 гл. VI, в том числе термическое (вермическое), и все неизвестные, которые, возможно, еще будут открыты, для любой по сложности системы и для любого уровня мироздания, поэтому представляет собой предельно универсальный, абсолютный закон природы. В самом общем виде второе начало может быть сформулировано сле­дующим образом: количество вещества Вселенной постоянно. Увеличение этого количества в одном месте Вселенной всегда неизбежно сопровождается его уменьшением в другом и на­оборот.

Второе начало ОТ в совокупности с первым определяет все то, что сохраняется в этом мире. Оказывается, что в общем случае сохранению подлежат только количества - вещества и его поведения (количества материи и движения). Все осталь­ное способно и вынуждено при определенных для каждого конкретного случая условиях претерпевать соответствующие изменения. Этим самым уточняется и конкретизируется древняя идея сохранения, принадлежащая еще Эмпедоклу: свойством не происходить из ничего и не быть уничтоженными обладают лишь две категории: количество вещества и количество пове­дения последнего. Все остальное преходяще.

Второе начало является новым законом, впервые сформу­лированным в рамках ОТ; об этом говорится, например, в рабо­тах [17, с.11 и др.; 18, с.66, 246; 20, с.236; 21, с.48]. Ранее были известны лишь две частные формы этого начала. Речь идет о законах сохранения массы и электрического заряда. Первый из них применительно к химическим явлениям был экспериментально установлен М.В. Ломоносовым в 1756 г. и французским ученым Лавузье в 1770 г. и поэтому иногда именуется законом Ломоносова-Лавуазье. Масса и электри­ческий заряд служат мерами количеств соответствующих веществ - кинетического и электрического; согласно второму началу ОТ, они подлежат обязательному сохранению при любых процессах взаимодействия системы и окружающей среды. Обязаны сохраняться также объем Ω , являющийся мерой количества метрической (пространство) формы вещества (см. параграф 2 гл. XV), количество термического (вермического) вещества и количества всех остальных веществ [ТРП, стр.109-110].