Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gotovye_Shpory_Ot_Dell.doc
Скачиваний:
156
Добавлен:
18.03.2015
Размер:
16.09 Mб
Скачать

23,24,25 Приборы для измерения истинной и приборной скорости ла, Указатель числа м, Вариометры

Аэрометрический метод измерения скорости и числа М

Принцип действия указателя скорости основан на измерении динамического (скоростного) напора полностью заторможенного потока воздуха.

Функциональная зависимость p=f(V), (рис. 4.7) между скоростями и давлением определяется с помощью уравнения Бернулли. Это уравнение рассматривается применительно к элементарной струйке, которая выделяется в набегающем потоке воздуха и тормозится в критической точке приемника давления (рис. 4.8).

(4.33)

Величина Δр называется динамическим или скоростным напором, a р2п давление – полным давлением. Оно равно сумме статического давления р1ст и скоростного напора Δp

(4.39)

Это выражение является градуировочной формулой указателей истинной воздушной скорости на дозвуковых скоростях. Видно, что для измерения скорости V необходимо измерять скоростной напор Δр, статическое давление р1 и температуру Т1 на высоте полета.

Если учесть, что скорость звука а в воздухе равна

то выражению (4.39) можно придать вид

гдеM=V/aчисло М полета.

Рассмотрим кинематическую схему манометрического указателя скорости.

1 - приемник статического давления; 2 - приемник полного давления; 3 – трубопроводы; 4 - корпус; 5 - манометрическая коробка.

Для измерения Δр в герметичный корпус прибора подается давление р1- рст измеряемое приемником полного давления. Измеренное давление поступает в прибор по трубопроводам. Манометрическая коробка деформируется в соответствии с разностью давлений Δр= рп- рст, а извлечение корня из этой величины для получения скорости осуществляется в передаточном механизме. Стрелка показывает измеряемую скорость.

Для измерения статического рст и полного рп давлений в набегающем потоке применяют приемники воздушного давления (ПВД).

Указатели приборной скорости градуируются по формулам (4.33) (4.38),(4.42) в предположении, что статическое давление Д и температура на высоте полета заменяется этими величинами на уровне моря (р0, Т0). Следовательно, показание прибора будет совпадать с истинной воздушной скоростью только на уровне моря. С подъемом на высоту прибор будет давать заниженные показания в связи с уменьшением р1 и температуры Т1. Без такого прибора невозможно пилотировать самолет.

Помимо указателя приборной скорости, необходим прибор для измерения истинной воздушной скорости полета. Для получения этой скорости следует измерить, помимо скоростного напора, также статическое давление и температуру на высоте полета. Для измерения статического давления р1 применяется анероидный блок, а для намерения температуры T1 можно применить специальный термометр наружного воздуха. В связи с тем, что измерить температуру T1 на высоте полета не удается с достаточной точностью, вместо измерения ее вводят в показания указателя истинной воздушной скорости компенсационный сигнал, взяв температуру T1 по стандартной атмосфере, т.е. применяют косвенный способ учета температуры воздуха.

В настоящее время применяются комбинированные указатели скорости (КУС), включающие измеритель приборной скорости и измеритель истинной воздушной скорости.

рис.4.10. Кинематическая схема комбинированного указателя скорости:

1—шкала циферблата; 2 — стрелка приборной скорости; 3, 27 — зубчатые секторы; 4, 5, 6, 7, 8, 9, 10, 22, 23, 24 — поводки; 11, 15, 20 — тяги; 12; 25 — оси; 13; 14 — вилки-. 16 — анероидная коробка; 17 — верхний центр анероидной коробки; 18 — манометрическая коробка; 19— верхний центр манометрической коробки; 21 — кривошип; 26, 28 — трубки; 29 — стрелка истинной скорости

В герметичном корпусе прибора размещены манометрический блок 1 и анероидный блок 30.

Рассмотрим работу указателя приборной скорости. При подаче полного давления в манометрический блок он демпфируется под действием разности полного и статического давлений (скоростного напора). Деформация блока посредством жесткого центра, тяги, поводка и зажима поворачивает ось. Далее движение передается через поводки и на ось. Сектор на оси через трубку передает вращение на стрелку 2 приборной скорости. Отсчет показаний производится по шкале 29.

Для получения истинной воздушной скорости прибор дополняется анероидным блоком 30 с соответствующим передаточным механизмом. При деформации анероидного блока движение передается через жесткий центр, тягу, поводок, зажим на ось. Далее через поводки движение передается на ось. При вращении оси через поводки и вращается ось сектора. Последний через трубку вращает стрелку истинной воздушной скорости.

Указатель числа М по своему устройству аналогичен указателю воздушной скорости (рис. 4.10).Работа прибора состоит в следующем.Под действием разности давлений Δр манометрический блок деформируется и посредством жесткого центра, тяги , поводка и зажима поворачивает ось. Последняя через поводки поворачивает ось. Затем движение передается через поводки на ось с закрепленным на ней сектором. Сектор вращает трубку и стрелку.

Высотная компенсация прибора (т.е. измерение статического рст) осуществляется анероидным блоком, который при изменении деформируется. Его деформация через жесткий центр, тягу, вилку и зажим передается на ось высотной компенсации. Движение этой оси через поводок передается на ось.

Указатель числа М имеет равномерную шкалу с делениями от М = 0,4 до М = 2,5 с ценой деления 0,02 А. Погрешность прибора при нормальных условиях не превышает 0,07 М.

Многие характеристики самолета зависят от числа М полета, особенно начиная с М>0,6, когда явление сжимаемости нельзя не учитывать. На сверхзвуковых скоростях полета сильно возрастает сопротивление воздухозаборника двигателя. Это приводит к изменению характеристик управляемости самолета. Для того чтобы летчик справился с управлением самолета при изменившихся характеристиках, он должен знать те значения числа М, при которых такое изменение происходит. Для этой цели служит указатель числа М. Конструктивно указатель числа М отличается от указателя истинной воздушной скорости отсчетным устройством и отсутствием коррекции в передаточном механизме по температуре, которая берется по МСА.

Погрешности. Указатель приборной скорости не имеет методических погрешностей. Его инструментальные погрешности обусловлены:

1) неточным измерением полного и статического давления с помощью ПВД, что вызывается несовершенством конструкции, местом установки приемника, влиянием углов атаки и скольжения;

2) неточным преобразованием сигналов в измерительной цепи прибора.

Указатели истинной скорости имеют методические и инструментальные погрешности. Методическая погрешность возникает при косвенном учете температуры воздуха.

Указатели числа М не имеют методических погрешностей. Инструментальные погрешности указателей истинной скорости и числа М аналогичны инструментальным погрешностям датчиков давления.

1. Шкаловые погрешности;

2. Погрешности, вызываемые трением в механизме;

3. Погрешности от неуравновешенности деталей передаточно-множительного механизма;

4. Температурные погрешности;

5. Погрешности гистерезиса.

Наибольшую величину имеют погрешности от трения и температурные погрешности.

Погрешность, вызываемая трением в механизме, обусловлена наличием сил трения в сопряженных деталях кинематической цепи (в шарнирах, осях, зубчатых парах и т.д.) и трением между щеткой и потенциометром.

Изменение температуры окружающей среды по сравнению с температурой градуировки приводит к следующим погрешностям:

а) изменение модуля упругости материала, из которого изготовлен упругий чувствительный элемент;

б) неодинаковое линейное расширение деталей из различных материалов при изменении температуры;

в) изменение сопротивлений рамок логометра.

Инструментальные температурные погрешности указателей скорости, в отличие от высотомеров не компенсируются по двум причинам. Во-первых, частичная компенсация этих погрешностей осуществляется за счет того, что измеряемые мембранными коробками величины Δр и р1 делятся друг на друга. Во-вторых, указатели скорости являются более грубыми приборами, поэтому компенсация инструментальных погрешностей не намного повысит точность прибора.

Вариометры.Принцип действия измерителей вертикальной скорости полета — вариометров (рис. 9) основан на измерении разности атмосферного давления и давления в корпусе прибора, соединенного с атмосферой через гидравлическое сопротивление (капиллярную трубку). Серийные вариометры типа ВАР (ВАР-30, ВАР-75, ВАР-150, ВАР-300) имеют унифицированный механизм и различаются только шкалами, количеством и длиной капилляров.

Рис.9 . Кинематическая схема вариометра с затухающей шкалой: 1— стрелка; 2 — рычаг; 3 — ось рычага; 4 — балансир; 5 — поводок; 6 и 15 — спиральные пружины- 7— тяга; « — капилляры; 9 — манометрическая коробка; 10 — трубка для подвода давлений Рс\ 11 — корпус прибора; 12 — поводок; 13 — эксцентрик; 14 — зубчатое колесо с прорезью; 16 — трубка на оси стрелки; 17 — рукоятка (кремальера)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]