Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Краткий курс лекций по сопромату. Часть 1.doc
Скачиваний:
366
Добавлен:
02.05.2015
Размер:
6.45 Mб
Скачать

2.7. Допускаемые напряжения

Как уже указывалось, детали машин и других конструкций должны удовлетворять условиям прочности (2.3) и жёсткости (2.13). Величина допускаемых напряжений устанавливается в зависимости от материала (его механических характеристик), вида деформации, характера действия нагрузок, условий работы конструкций и тяжести последствий, которые могут наступить в случае разрушения:

, (2.32)

где σОП – напряжение, соответствующее наступлению опасного состояния для данного материала; n – коэффициент запаса прочности, n > 1.

Для деталей, выполненных из пластичного материала, опасное состояние характеризуется появлением больших остаточных деформаций, поэтому опасное напряжение равно пределу текучести σоп = σт.

Для деталей, изготовленных из хрупкого материала, опасное состояние характеризуется появлением трещин, поэтому опасное напряжение равно пределу прочности σоп = σпч.

Все перечисленные выше условия работы деталей учитываются коэффициентом запаса прочности. При любых условиях имеют место некоторые общие факторы, учитываемые коэффициентом запаса прочности:

1. Неоднородность материала, следовательно, разброс механических характеристик;

  1. 2. Неточность задания величин и характера внешних нагрузок;

3. Приближённость расчётных схем и методов расчёта.

На основании данных длительной практики конструирования, расчёта и эксплуатации машин и сооружений величина коэффициента запаса прочности для стали принимается равной 1,4 – 1,6. Для хрупких материалов при статической нагрузке принимают запас прочности 2,5 – 3,0. Итак, для пластичных материалов:

. (2.33)

Для хрупких материалов

. (2.34)

При сравнении свойств пластичных и хрупких материалов отмечалось, что на прочность влияет концентрация напряжений. Теоретические и экспериментальные исследования показали, что равномерное распределение напряжений по площади поперечного сечения растянутого (сжатого) стержня в соответствии с формулой (2.2) нарушается вблизи мест резкого изменения формы и размера поперечного сечения – отверстий, галтелей, выкружек и др. Около этих мест возникают локальные всплески напряжений – концентрация напряжений.

Для примера рассмотрим концентрацию напряжений в растягиваемой полосе с малым отверстием. Отверстие считается малым, если выполняется условие d ≤ b/5 (рис.2.27,а). При наличии концентрации напряжение определяется по формуле:

σmax = ασ∙ σnom. (2.35)

где ασ – коэффициент концентраций напряжений, определяемый методами теории упругости или экспериментально на моделях;

σnom – номинальное напряжение, т.е. напряжение, вычисленное для данной детали при отсутствии концентрации напряжений.

Для рассматриваемого случая (ασ = 3 и σnom = N/F) эта задача является в известном смысле классической задачей о концентрации напряжений и называется по имени решившего её в конце XIX века учёного задачей Кирша.

Рассмотрим, как поведет себя полоса с отверстием по мере увеличения нагрузки. В пластичном материале максимальное напряжение у отверстия станет равным пределу текучести (рис.2.27,б). Концентрация напряжений всегда очень быстро затухает, поэтому уже на небольшом удалении от отверстия напряжение гораздо меньше. Увеличим нагрузку (рис.2.27,в): напряжение у отверстия не увеличивается, т.к. пластичный материал имеет довольно протяжённую площадку текучести, уже на некотором удалении от отверстия напряжение становится равным пределу текучести.

а б в г

Рис.2.27

Дальнейшее увеличение нагрузки (рис.2.27,г) приводит к распространению текучести на все ослабленное сечение – наступает опасное (предельное) состояние. Причем, это предельное состояние совершенно не отличается от такового для полосы без отверстия. Вывод – пластичный материал (мягкая малоуглеродистая сталь) не чувствителен к концентрации напряжений при статической нагрузке.

В хрупком материале распределение напряжений в начале нагружения не отличается от такового в пластичном материале (рис.2.27,а). Нагрузка растёт до тех пор, пока напряжение на границе отверстия не станет равным пределу прочности. И хотя на небольшом удалении от отверстия напряжение гораздо меньше, это состояние является опасным (предельным), т.к. на поверхности отверстия появились трещины. Эти трещины растут очень быстро при постоянной нагрузке и наступает момент разрушения полосы. Вывод – хрупкий материал очень чувствителен к концентрации напряжений. Поэтому коэффициент запаса прочности принимается равным n = 3,0 – 9,0.

При циклических и динамических напряжениях пластичные стали чувствительны к концентрации напряжений. Ориентировочные величины основных допускаемых напряжений на растяжение и сжатие при статической нагрузке приведены в табл.2.5.

Таблица 2.5

Материал

Допускаемое напряжение, МПа

растяжение

сжатие

Сталь Ст3

160

Сталь машиностроительная углеродистая

160-250

Сталь машиностроительная легированная

200-400 и выше

Чугун серый в отливках

28-80

120-150

Латунь

70-140

Алюминиевый сплав

80-150

Сосна вдоль волокон

7-10

10-12

Кирпичная кладка

до 0,2

0,6-2,5

Бетон

0,1-0,7

1-9