Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Краткий курс лекций по сопромату. Часть 1.doc
Скачиваний:
366
Добавлен:
02.05.2015
Размер:
6.45 Mб
Скачать

3.3.2. Обратная задача

Дано: напряжения σх, σу, τху (рис.3.8,а).

Определить: положение главных площадок и величины главных напряжений σ1 и σ2.

По определению на главных площадках τα = 0. Из формулы (3.10) найдём угол α0 между осью х и одним из главных напряжений.

,

. (3.17)

Величины главных напряжений можно найти по формулам (3.14) и (3.15), подставив в них α0. Удобнее иметь формулы для главных напряжений, не зависящие от углов и тригонометрических функций. Для вывода используем зависимости косинуса и синуса двойного угла от тангенса

, .

Подставим их в формулу (3.14):

. (*)

Теперь в выражение (*) подставим tg 2α0 по формуле (3.17) и получим значение большего главного напряжения

.

Второе главное напряжение получим, используя формулу (3.15). В результате выражение для главных напряжений при плоском напряжённом состоянии имеет следующий вид:

. (3.18)

Для определения σmax после первого слагаемого ставим «+», а для определения σmin ставим «–». Следует обратить внимание на то, что если одно из главных напряжений, вычисленных по формуле (3.18), окажется отрицательным, то их следует обозначить σ1 и σ3. Если же оба главных напряжений окажутся отрицательными, то σ2 и σ3; оба положительными, то σ1 и σ2.

Главные напряжения обладают свойством экстремальности – одно из них наибольшее, другое – наименьшее из всех возможных в данной точке тела (помним о том, что сумма нормальных напряжений на взаимно перпендикулярных площадках постоянна). Для доказательства исследуем на экстремум функцию σα (формула 3.9). Продифференцируем её и приравняем производную нулю.

 – 2τxy cos 2α = (σx – σy)sin 2α  .

Площадки, характеризуемые этими углами, являются главными в соответствии с формулой (3.17).

3.4. Объёмное напряжённое состояние. Общие понятия

Объёмное напряжённое состояние встречается реже, чем плоское. Пример – толстостенный сосуд давления (рис.3.10). Подробным образом изучают объёмное напряжённое состояние в курсе теории упругости, в сопротивлении материалов – только основные понятия.

Рис.3.10

Рассмотрим объёмное напряжённое состояние, заданное главными напряжениями (рис.3.11).

Рис.3.11

Напряжения, действующие по наклонной площадке с нормалью n, находятся по формулам

σα = σ1cos2α1 + σ2cos2α2 + σ3cos2α3, (3.19)

. (3.20)

Эти формулы приведены без вывода. В них α1, α2, α3 – углы, которые образуют нормаль к площадке n с осями x, y, z соответственно.

Если наклонная площадка параллельна одному из главных напряжений, то напряжения, по ней действующие, не зависят от этого главного напряжения. Они определяются по формулам плоского напряженного состояния в зависимости от двух других главным напряжений. Учитывая, что главные напряжения экстремальные, т.е. σ1 = σmax и σ3 = σmin, легко найти наибольшее касательное напряжение. Очевидно, оно действует по площадке, параллельной σ2 и наклоненной под углом 450 к σ1 и σ3 (рис.3.12). Определяется формулой (3.13)

. (3.21)

Рис.3.12

Известный интерес, особенно при изучении пластических деформаций, представляют напряжения, действующие по площадке, равнонаклонённой ко всем главным направлениям. Такая площадка называется октаэдрической, поскольку она параллельна грани октаэдра, который может быть образован из куба. Нормаль к этой площадке образует равные углы с главными направлениями:

α1 = α2 = α3 = α.

Учитывая, что всегда

cos2α1 + cos2α2 + cos2α3 = 1,

Получаем

cos2α = ⅓.

Тогда из формул (3.19) и (3.20) находим

, (3.22)

. (3.23)

При изучении вопросов прочности деформация бесконечно малого элемента разделяется на деформацию изменения объёма и деформацию искажения формы. Оказывается, что σокт «ответственно» за изменение объёма, а τокт – за изменение формы.

Напряжение σокт представляет собой среднее напряжение для данного объемного напряженного состояния, σокт = σср