Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MU_dlya_RGR.doc
Скачиваний:
344
Добавлен:
19.05.2015
Размер:
729.6 Кб
Скачать

1.3 Электродный потенциал. Стандартный электродный потенциал. Ряд стандартных электродных потенциалов

Между положительными ионами и электронами возникает скачок потенциала, который называется электродным потенциалом. Потенциал, возникающий в условиях равновесия электродной реакции, называется равновесным электродным потенциалом.

Значение электродного потенциала, возникающего на границе металл-раствор, зависит от природы металла, активности ионов этого металла и от температуры.

Абсолютное значение электродного потенциала в настоящее время измерить или рассчитать невозможно. Но можно определить значение электродного потенциала относительно какого-либо электрода, выбранного в качестве стандарта. Согласно международному соглашению таким стандартом служит стандартный (нормальный) водородный электрод, потенциал которого условно принят за нуль: = 0.0 В.

Стандартный водородный электрод представляет собой платиновую пластинку, покрытую платиновой чернью и опущенную в раствор Н2SO4 или HCI с = 1 моль/л, через который все время пропускается газообразный Н2 под давлением 101.3 кПа при 298 К (рис. 2).

Рисунок 2 – Водородный электрод

Платина, отличающаяся высокой химической стойкостью, в электродном процессе не участвует. Ее роль сводится к адсорбции на своей поверхности водорода и переносу электронов. На поверхности платины протекает процесс:

H2 ⇄ 2Н+ + 2.

Если пластинку любого металла соединить со стандартным водородным электродом, то получим значение стандартного электродного потенциала данного металла.

Располагая металлы в порядке увеличения стандартных электродных потенциалов, получают электрохимический ряд напряжений металлов. Металлы, стоящие в ряду напряжений после водорода, не способны вытеснять водород из кислот. Вытеснение металла из солей другим металлом осуществляется только в том случае, если вытесняющий металл расположен в ряду напряжений до вытесняемого. Чем дальше друг от друга удалены металлы в электрохимическом ряду напряжений (т.е. чем больше разница между стандартными потенциалами металлов), тем больше ЭДС гальванического элемента, в котором эти металлы использованы.

Стандартные потенциалы являются количественной мерой окислительно-восстановительной способности системы. Чем выше значение φ0, тем большей окислительной способностью обладает окисленная форма данной пары. Восстановительные свойства сильнее выражены у восстановленной формы в паре с меньшим значением φ0.

Все металлы в ряду напряжений делятся на: активные (литий – алюминий), средней активности (до водорода), неактивные.

1.4 Расчет электродного потенциала. Уравнение Нернста

В результате изучения потенциалов различных электродных процессов установлено, что их величины зависят от следующих факторов:

1) от природы веществ – участников электродного процесса;

2) от соотношения между концентрациями этих веществ;

3) от температуры системы.

Значения электродных потенциалов рассчитывают по уравнению Нернста:

,

где ‑ стандартный электродный потенциал, измеренный при стандартных условиях; R = 8.314 Дж/моль·К, универсальная газовая постоянная; Т – температура по шкале Кельвина; F – число Фарадея, равное 96500 Кл/моль; [Ox] и [Red] – произведения концентраций веществ, участвующих в процессе в окисленной (Ox) и восстановленной (Red) формах.

Или для металлического электрода

,

где n – число электронов, теряемых атомом металла при образовании катиона; ‑ активность ионов металла в растворе электролита.

Для обычной при электрохимических измерениях стандартной температуры (Т = 25ºС или 298 К), при подстановке значений постоянных величин уравнение принимает вид:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]