Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Монографія_Нано2009_Останній варіант.doc
Скачиваний:
135
Добавлен:
10.02.2016
Размер:
7.09 Mб
Скачать
  1. Аковбян В.А. (2003) Серорезистентность при сифилисе: оценка состояния на основе принципов доказательной медицины. Матер.науч.-практ.конф. ММА им. И.М.Сеченова, 27-28 ноября 2003 г., Москва, с.4-5.

  2. Аствацатуров К.С. Сифилис, его диагностика и лечение. – Москва, изд-во «Медицина», 1971. – 431 с.

  3. Бохонов Б.Б., Юхин Ю.М. Синтез наноразмерных частиц висмута и серебра: Тез. докл. научно-практической конференции с международным участием «Нанотехнологии и наноматериалы в биологии и медицине». – Новосибирск, СибУПК. – 2007. – С. 65.

  4. Брансдорф Г.С. Экспериментальное изучение токсической и терапевтической эффективности пентабисмола // Фармакология и токсикология. – 1957. – Т.20, №3. – С.74–77.

  5. Григорьев П.С. Учебник венерических болезней. – Москва-Ленинград, Изд-во биологической и медицинской литературы, 1934. – 436 с.

  6. Груздев Г.Ф. Русские рукописные лечебники. – Ленинград, 1946. – 264 с.

  7. Дмитриев Г.А. К вопросу о серорезистентности при сифилисе // Consilium Medicum. – 2003. – №5. – С. 152–154.

  8. Заболотный Д.К., Маслаковец П.П. Наблюдения над движениями и склеиванием бледной спирохеты (Spirochaeta pallida) // Русский врач. – 1907. – №11. С. 361.

  9. Кузнецова К.В., Михайлов К.Ю., Юхин Ю.М. Термическое превращение формиатов висмута. – Тез. док. второй Всероссийской конференции по наноматериалам, Новосибирск. 2007. С. 183.

  10. Мавров И.И. Половые болезни (руководство для врачей). – Харьков, 2002. – 788 с.

  11. Маслов П.Е., Петрушевский С.И., Белякова А.Г. Новый русский водорастворимый препарат висмута – пентабисмол в лечении сифилиса // Вестник дерматологии и венерологи. – 1957. – Т.31, № 3. – С. 32–35.

  12. Машковський М.Д. Лекарственные средства. – Москва, Новая Волна. – 2000. – 608 с.

  13. Милич М.В. (1987) Эволюция сифилиса, Москва, Медицина, 158с.

  14. Михайлов К.Ю. Физико-химические свойства и термические превращения лауратов висмута: авт. дис. канд. физ.-мат. наук, Новосибирск, СибУПК. –2005. – 25 с.

  15. Назаров П.Г., Старченко М.Е., Касаткин Е.В. и др. Новая концепция формирования серорезистентности при сифилисе // Вестник дерматологии и венерологи. – 1996. – №6. – С. 17–19.

  16. Нестеренко В.Г., Аковбян В.А., Петренко Л.А. и др. Серорезистентность после лечения сифилиса: дюрантные пенициллины и новый серологический диагностический комплекс // Российский журнал кожних и венерических болезней. – 2005. – №4. – С. 12–16.

  17. Передерий В.Г., Ткач С.М., Скопиченко С.В. Язвенная болезнь: прошлое, настоящее, будущее. – Киев, 2003. – 149 с.

  18. Пономаренко Н.М., Дерев’янко Л.А. Використання ІФА-IgM-тесту типу «захоплення антитіл» у клініко-серологічній оцінці немовлят від матерів з позитивними серологічними реакціями на сифіліс // Дерматовенерологія, косметологія, сексопатологія. – 2004. – №3-4. – 252–255.

  19. Потоцкий И.И., Богданович С.Н. Опыт сокращенного срока лечения заразных форм сифилиса // Врачебное дело. – 1968. – №2. – С. 93–97.

  20. Прохоренков В.И., Аковбян В.А. Серорезистентность после проведеного лечения сифилиса: болезнь или состояние // Consilium Medicum. – 2002. – №4. – С. 260–262.

  21. Родионов А.Н. Сифилис: руководство для врачей. – Санкт-Петербург, Изд-во Питер. – 2000. – 288 с.

  22. Розенфельд Л.Г., Москаленко В.Ф., Чекман І.С. і співав. (2008) Нанотехнології, наномедицина: перспективи наукових досліджень та впровадження їх результатів у медичну практику, Український медичний часопис, 67(5): 63–68.

  23. Романова Н.В. Загальна та неорганічна хімія. – Київ, Перун. – 2002. – 480 с.

  24. Сергеев Г.Б. (2007) Нанохимия. 2-е изд., испр. и доп.,Москва, Изд-во МГУ, 336 с.

  25. Скороходов Л.Я. История русской медицины. – Ленинград, 1926. – 406 с.

  26. Туркевич М.М. Властивості і будова пентабісмолу // Фармацевтичний журнал. – 1963. – Т. 18. – С. 30–31.

  27. Туркевич Н.М. Комплексные соединения висмута с цитратами. Украинский химический журнал. – 1949. – Т. 15, №2. – С. 253–257.

  28. Тухтаев Р.К., Юхин Ю.М., Удалова Т.А. и соавт. (2009) Химия твердого тела: монокристаллы, наноматериалы, нанотехнологии. Тез.докл. IX международной научно-практической конференции, Кисловодск-Ставрополь, СевКавГТУ, с. 427.

  29. Фигуровский Н.А. Открытие элементов и происхождение их названий. – Москва, Наука. – 1970. – 204 с.

  30. Фракасторо Д. О сифилисе (перевод с итальянского). – Москва, Изд-во Медгиз, 1956. – 286 с.

  31. Цвєткова Г.М., Мордовцев В.Н. Патоморфологическая диагностика заболеваний кожи. – Москва, Медицина, 1986. – 300 с.

  32. Чеботарев В.В., Земцов М.А., Павлик А.В., Чеботарева Н.В. (2006) Проблема серорезистентности у больных сифилисом, леченных по современным методикам // Клиническая дерматология и венерология. – №2. – С. 101–106.

  33. Чекман І.С., Дорошенко А.М., Загородний М.І. (2009) Металічні наноскорини – експериментально-клінічні основи. Український медичний часопис,70(2) : 99-103.

  34. Юхин Ю. М., Михайлов К. Ю., Бохонов Б. Б. и соавт. (2004) Синтез оксогидроксолаурата висмута (III) // Химия в интересах устойчивого развития. – Т. 12, №3. – С. 409–415.

  35. Asterita Mary Frances. (1987) Physical exercise, nutrition and stress. Praeger Publishers, 216 р.

  36. Bonamigo R.R., Leite C.S., Wagner M., Bakos L. Rosacea and Helicobacter pylori: interference of systemic antibiotic in the study of possible association // J. Eur. Acad. Dermatol. Venereol. – 2000. – 14:424-425.

  37. Briand G.G., Burford N., Cameron T.S. et al. (1998) Defining and controlling the aminoethanethiolate chemistry of bismuth(III): Synthesis and comprehensive characterization of the homologous thiolatobismuth series. J. Am. Chem. Soc.,120: 11374-11379.

  38. Greenwood N.N., Earnshaw A. Chemistry of the elements ( 1997). 2nd edn. Reed Educational and Professional Publishing Ltd., 553 р.

  39. Jia R. R., Wu C. P., Yang Y. X. et al. Preparation of new amino acid complex nanoparticles of bismuth and leucine // Nano Lett. – 2005. – Vol. 28. – P. 409–412.

  40. Kopf-Mair P., Klapotka T. Antitumor activity of some organome-tallic bismuth(III) thiolates // Inorg. Chem. Acta. – 1988. – Vol. 152. – P. 49–52.

  41. Lambert.J.R. Pharmacology of bismuth-contaning compounds // Rev. Infect.Dis. – 1991. – Vol. 13, (Suppl. 8). – P. 691–695.

  42. Li Y., Wang J., Deng Z., Wu Y. et al. Bismuth nanotubes: a. rational low-temperature synthetic ronte // J. Am. Chem. Soc. – 2001. – Vol. 123. – P. 9904 – 9905.

  43. Megraud F. Basis for the management of Drug-resistant Helicobacter pylori infection // Drugs. – 2004. – Vol. 64. – 1893–1904.

  44. Rebora A., Drago F. Helicobacter pylori and rosacea // J. Eur. Acad. Dermatol. Venereol. – 2000. – Vol. 43, №5. – Р. 884.

  1. Наномагній

Характерною рисою науки

є якраз те, що потребує

активної діяльності.”

І.І. Мечніков (1845–1916),

Російський вчений,

лауреат Нобелівської премії

Наномагній

Історія відкриття магнію. Історія відкриття магнію, який потім назвали англійською або гіркою сіллю, почалася з 1625 року, коли англійський вчений Д. Гро отримав речовину шляхом випаровування мінеральної води епсомського джерела. Такий же порошок отримували при прокалюванні металу, знайденого біля міста Магнезії. Отримана сполука була подібна гірській солі і отримала назву магнезія. Шотландський вчений з Единбургу Д. Блек в 1755 році довів існування індивідуального елементу з властивостями білої магнезії і назвав його магнієм. Чистий магній отримав спочатку Г. Деві у 1808 році, а пізніше А. Бюссі в 1829 році [17].

Магній – це регулятор біохімічних та фізіологічних процесів в організмі, належить до 12 структурних елементів, які становлять 99% елементного складу організму людини. Оскільки цей елемент є одним із основних внутрішньоклітинних іонів, бере участь у вуглеводному, білковому, ліпідному обмінах [Андріанова і спів.; Коломієць; ЧекманНіколай4,10, 18]. Іон Mg2+ знаходиться на четвертому місці по знаходженню його кількості в організмі людини після натрію, калію та кальцію. Важливий для здійснення транскрипції ДНК, а також при підтриманні стабільності РНК. Процеси транспорту Mg2+ регулюються гормонами (наприклад, антидіуретичними пептидами, глюкогоном, кальцитоніном, інсуліном) [Торшин15].

Фармакокінетика магнію. Всмоктування магнію відбувається в три етапи. Перший етап – це абсорбція, тобто всмоктування Mg2+ у кишечнику та у дванадцятипалій кишці. Магній засвоюється відносно добре (30-35% з харчових продуктів). Покращують всмоктування магнію вітамін В6, молочна та аспарагінова кислоти. Молоко та молочні продукти, що містять казеїн, теж сприятливо впливають на абсорбцію магнію. Другим етапом фармакокінетики є розподіл магнію в організмі. Загальна кількість магнію в дорослому організмі може складати в середньому 24-25 г (близько 1000 ммоль). Концентрація в клітинах становить 5-10 ммоль/л, а в сироватці крові в нормі – 0,75-0,95 ммоль/л. Завдяки неоднорідності його розподілу в різних структурах тканин дані можуть помітно відрізнятися (наприклад, в еритроцитах – 2-2,5 ммоль/л). Третій етап це елімінація. Mg++ з організму виділяється головним чином нирками. За добу нирками виділяється близько 100 мг. В звичайному стані незначна кількість виводиться з потом. Люди, які підлягають значним фізичним навантаженням, з потом втрачають більшу кількість магнію. При суттєвому підвищенні температури повітря або збільшенні фізичного навантаження втрати магнію в процесі потовиділення можуть складати близько 15% всієї його кількості. У таких випадках поповнити втрати у пацієнтів можна лише за допомогою препаратів, що містять магній, або спеціальної дієти [Горецький; Watkins7, 50].

Магнієвий дефіцит буває первинним та вторинним. Первинний або конституційний, латентний, проявляється спазмофілією. Такий дефіцит може бути не пов’язаним із вмістом магнію в крові. Причиною є порушення трансмембранного обміну. Вторинний дефіцит магнію – це дефіцит, причиною якого є умови життя та хвороби людини. Найпоширенішими причинами порушень є такі фактори: гіпокалорійні дієти, що використовують з метою зниження ваги; стрес, особливо такий, що став хронічним; гіподинамія; вплив високих температур (сауни, бані, жаркий клімат, гарячі цехи тощо); гіперкальціємія; вагітність і лактація; діуретична, глюкокортикоїдна терапія; гормональна контрацепція; гіперглікемія; інфаркт міокарду тощо [Горецький; Межевитинова 7, 13]

З харчовими продуктами не завжди у організм надходить достатня кількість магнію, тому рекомендують щоденно вживати такі продукти та пити напої: коренеплоди, ягоди, злаки, фруктові соки, мінеральні води і т.п. Розрахунки добової норми вмісту вживання магнію залежать також від віку. Організм дитини, який в період росту активно формується, потребує багато енергії, адже повинен забезпечуватися всіма необхідними корисними компонентами харчування. Людям похилого віку доцільно складати раціон з урахуванням потреб організму індивідуально, тому що зі старінням організм засвоює меншу кількість магнію з їжею. Потреба в магнії зростає у вагітних жінок, годуючих матерів, хворих на вірусні та бактеріальні захворювання і спортсменів [Горецький; Кулиенков; ЧекманБеленічев7, 12, 17]. Відомо також, що гіпомагнезія спостерігається у хворих на цукровий діабет 2-го типу. Тому пацієнтам показані препарати магнію, які комбіновані з вітаміном В6. Це дозволяє стабілізувати рівень глюкози в крові, тим самим поліпшивши стан хворого. Застосування препаратів магнію протягом 2 тижня І, ІІ та ІІІ триместрів вагітності сприяє зниженню частоти випадків гіпоксії плоду при родах, підвищує імунітет вагітних жінок до ОРЗ [Кошелева11].

Таблиця 1.

Норми фізіологічної потреби в магнії [Скальний14].

Вік, фізіологічний стан

Норма фізіологічної потреби, мг на добу

0-3 міс

55,0

4-6 міс

60,0

7-12 міс

70,0

1-3 року

150,0

4-6 років

200,0

6 років (школярі)

250,0

7-10 років

250,0

11-13 років

300,0

14-17 років

300,0

Понад 17 років

400,0

Вагітні жінки й жінки, що годують

450,0

Клінічні прояви дефіциту магнію виявляються порушенням синтезу інсуліну, інсулінорезистентністю, підвищенням функції щитовидної залози, підвищеним виділенням катехоламінів (ендокринно-обмінні процеси); вегетативною дисфункцією, синдромом хронічної втоми, запамороченнями, головним болем, а також тривогою, необґрунтованими страхами, депресією, галюцинаціями тощо (психічні та неврологічні процеси); розвитком атеросклерозу, артеріальної гіпертензії, тахікардією, аритмією [Школьников21].

Даний біометал знижує збудження в нервових клітинах, розслаблює серцевий м’яз [ГорчаковаТкачук8], регулює функцію нервової, серцево-судинної, кістково-м‘язової системи, шлунково-кишкового тракту та ін. [Боброва; Боброва; 5,6]. Препаратам магнію властива мембраностабілізуюча дія, наслідком чого є виражене пригнічення функції нервової системи, що призводить до зменшення тривоги, стабілізації психологічного стану, заспокоєння та до врівноваження реакції на зовнішні подразники. Магній відіграє особливе значення у реалізації біохімічних процесів, так як є природним антагоністом кальцію [Андреев3]. Магній взаємодіє з кальцієм на рівні мембран та безпосередньо може впливати на їх збудливість [Resnick 43]. Солі магнію пригнічують функцію ЦНС, проявляють антиішемічний, гіпотензивний, діуретичний ефекти. Найпоширенішими лікарськими формами магнієвмісних препаратів є таблетовані препарати та препарати, які використовують для парентерального введення.

Обстежені хворі зі встановленим діагнозом дефіцит магнію, що клінічно проявлявся астено-невротичним синдромом, яким призначали препарат Магне В6. Після застосування Магне В6 самопочуття пацієнтів поліпшилося і не спостерігалося швидкої втомлюваності, запаморочення, головного болю, що стверджувало підвищення адаптаційних можливостей організму [Акарачкова; Акарачкова1, 2].

Магній є кофактором багатьох ферментативних реакцій, проявляючи позитивну дію безпосередньо чи опосередковано. Завдяки властивості вступати у зв’язки з органічними речовинами магній приймає участь у таких реакціях як креатинінфосфокіназа, Са-АТФ-аза, ферментів білкового синтезу, гліколізу та ін. Магній бере участь у метаболічних процесах, регулює фосфорний, білковий і вуглеводний обміни, знижує збудливість нейронів та пригнічує передачу нервового імпульсу, стимулює розпад нуклеїнових кислот. Магній сприяє адаптуванню організму до холоду; цей елемент є структурним компонентом кісток та зубної емалі (до 53 %), 20 % знаходиться в серці, м’язах, печінці, нирках і лише 10 % поза клітинами [Акарачкова; Торшин; ЧекманБеленичев1, 15, 17].

Препарати магнію нормалізують артеріальний тиск, знімають спазми судин, тому в них виражена спазмолітична та судинорозширювальна дія. У пацієнтів з ураженням ЦНС та інших життєво важливих систем, коли спостерігається дефіцит магнію і необхідне лікування патологічного стану, застосування препаратів магнію є необхідною складовою [Боброва;Gueux6, 28].

Експериментальні вивчення молекулярних механізмів регулювання обміну речовин повинні включати в себе аналіз ультраструктурних змін, що викликані дефіцитом Mg3+/Ca2+, аналіз відношення між активністю матричних металопротеіназ та Mg2+ in vitro й in vivo. Такі медикаменти виявляють мембраностабілізуючу, антиоксидантну, антиаритмічну дію. В умовах ішемії та гіпоксії одним із механізмів впливу препаратів на клітини є пригнічення процесів відьнорадикального окислення білків і перекисного окиснення ліпідів. Протиаритмічна дія магнію широко використовується, адже про неї добре відомо. Препарати доцільно використовувати при: шлуночковій тахікардії; шлуночкових аритміях; суправентрикулярній пароксизмальній тахікардії тощо. Завдяки зазначеній дії та вмісту іонів магнію препарати потенціюють клінічну ефективність протиаритмічних засобів та виявляють антиаритмічну дію. При станах, пов’язаних з активацією вільно-радикальних реакцій, застосування препаратів супроводжується зменшенням проникності клітинних мембран [Аракова, БоброваГорецький2, 6, 7].

Біодоступність магнію регулюється генами, серед яких є такі, як TRPM6 та TRPM7, що найголовніші для даного явища. Білок TRPM6 (transient receptor potential cation channel 6) – це іонний канал, що транспортує двовалентні катіони і разом з іншим каналом TRPM7 (transient receptor potential cation channel7) утворює функціональні комплекси на поверхні клітини. Під впливом протеінкінази, яка активується катехоламінами, чутливість TRPM7 до іонів магнію зростає. Це спричиняє закупорення каналів клітини, в свою чергу викликаючи дефіцит магнію. Ген CASR (утворюється в прищитовидній залозі та ниркових канальцях) діє як сенсор, що реагує на концентрацію катіонів за рахунок високої чутливості, відіграє важливу роль в підтриманні катіонного гомеостазу. Дефекти, що можуть виникати в цьому гені, викликані гіпер- або гіпокальціємією. Активація CASR Ca2+/Mg2+-чутливого рецептора понижує активність білкової кінази А (РКА). Внаслідок цього впливу зменшується фосфорилювання клаудина-16 в лізосоми. Результатом цього явища є зменшення реабсорбції магнію в ниркових канальцях [Торшин15].

Наномагній. Наночастинки магнію проявляють специфічні властивості, що частково пояснюється їх поверхневою активністю, зарядом атомів, структурою молекули. Це зумовлює легку їх проникність через мембрани тканин. Наноматеріали можна застосовувати в якості речовин для створення лікарських засобів з метою зменшення негативних ефектів медикаментів та діагностики хвороб [Гусев; Чекман; BaptistaThaxton9, 16, 22, 49].

Для кожної наночастинки характерним є діапазон активності, що зумовлений її розмірами. Малі частинки з розмірами близько 5-15 нм активніше вступають в реакцію з оточуючим середовищем. Наномагній зі збільшенням/зменшенням розмірів змінює свої фармакотерапевтичні властивості. Під час дослідів це потрібно враховувати, адже навіть з незначними різницями розмірів результат може суттєво відрізнятися. Для медичного застосування й випробовування ефективними є нанострижні (nanorods) з довжиною 17-70 нм. Наносфери та наноскоринки, що мають округлу форму, доцільно використовувати діаметром 30-40 нм [Ge Y; Huang X; Rosenberg 26, 34, 45].

Експериментальних досліджень з препаратами наномагнію недостатньо, в той час коли наноструктурований магній активно використовують в розробках нових речовин з певними властивостями для промисловості. Можливо це пояснюється комерційною зацікавленістю компаній створенням нової техніки та промислової продукції. Звертається увага на агрегатну стійкість щодо атмосферного впливу, агресивних хімічних середовищ тощо.

Заслуговують на увагу наногетероструктури магнію та цинку, в яких хімічна модуляція поширюється радіально. Виявлені відмінності в інтенсивності випромінювання в ядрі та на поверхні оболонки. Ці досліди важливі для розвитку майбутньої наноінженерії, що повинна інтегруватися в розвиток нових функціональних нанопристроїв [Rosenberg45].

Наномагнію, як і деяким іншим наночастинкам, притаманне пасивне накопичення у ділянці злоякісної пухлини (пасивний таргетинг). Це обумовлено захопленням їх макрофагами і так званим ефектом підвищеної проникності і накопичення, який є проявом недосконалості судинної системи злоякісних пухлин, що швидко розвиваються [Maeda; Moore; Zimmer; 39, 40, 56].

Як відомо, наномагній має специфічні оптичні властивості. В залежності від коливань електронів та частоти хвилі падаючого світла деякі промені можуть поглинатися, інші відбиватися. Саме на цьому методі ґрунтуються дослідження для діагностики захворювань. Наприклад, тканина, що складається з ракових клітин за рахунок патологічного ділення ущільнюється, тому її структура відрізняється від структури функціонально однакових клітин. Наночастинки здатні відбивати світло з інтенсивністю, що на порядки перевищує інтенсивність випромінювання багатьох відомих барвників, які використовуються у діагностичних цілях. При цьому на відміну від останніх, не спостерігається ефекту знебарвлення [Sonnichsen47]. Це, наприклад, зумовлює колір забарвлення та його інтенсивність в колоїдних розчинах наночастинок золота (червоне,фіолетове, блакитне). Забарвлення розчину залежить від багатьох факторів, таких, наприклад, як метод отримання частинки наномагнію. В той же час наночастинки магнію активно поглинають хвилі з певною довжиною. Відбувається перетворення енергії світла у теплову. Довжина хвилі, при якій спостерігають поверхневий плазмоновий резонанс, значно залежить від форми, розмірів та хімічної властивості наноелементів [Huang X; Jain PK; 34, 35]. Явище поверхневого плазмонового резонансу лежить в основі нової методики діагностики та лікування злоякісних пухлин. Наномагній можна використовувати як контрастний агент. Наприклад, хвора ділянка органа насичується такими частинками і дещо змінює своє забарвлення [Huang X,El-Sayed; Huang X,El-Sayed; 32, 33].

Кластери двохвалентного магнію та кальцію використовують як нанокалориметри для вимірювання внутрішньої енергії, що знаходиться в обраній ділянці при захопленні теплових електронів. Результатом активації цих груп є інфрачервоне випромінювання на поверхні вакуумної камери, а також від нагрітого катода. Зіткнення електронів відбуваються при їх низьких енергіях. Спостерігаються різні способи дисоціації двохвалентних кластерів магнію та кальцію [Coon J; Syka 23, 48].

Головною проблемою є розробка й створення ефективних й безпечних матеріалів для зберігання водню. Магній та його сплави розглядається як перспективний метал, що може використовуватися для практичного зберігання водню по причині низької собівартості та високої продуктивності. При застосуванні даних матеріалів необхідно вирішити ряд проблем, що пов’язані з температурою плавлення, структурою, ємністю. При цьому не менш важливо те, щоб такий матеріал, вступаючи в реакції, не виділяв побічних речовин як всередину, де проходять реакції, так і назовні. Адже такі прилади спрямовані на роботу з людьми, а гази, пар і т. п. можуть бути небезпечними для людського організму. З появою наноструктурованих речовин завдання полегшилося. Почалися активні розробки нового економічно вигідного, безпечного, якісного матеріалу для зберігання водню. Таким чином, стало можливим надавати нових властивостей звичним матеріалам, при цьому помітно поліпшивши характеристики, що залежать від температури та хімічних реакцій, які відбуваються під час плавлення. Крім того, за участю наноструктурованого магнію можуть бути леговані інші металічні матеріали, наприклад, такі як нікель. Ванадій і залізо виявилися не досить зручними та надійними. Нещодавно синтезовані матеріали вуглеводів: вуглеводні нанотрубки, які мали інший вплив на зберігання водню в сплавах магнію за рахунок підвищення дифузії водню в системах Mg2H2-C [Xiangdong53].

Нанобіотехнології можуть суттєво поліпшити якість доставки до патологічного процесу важко розчинних у воді лікарських засобів, переносити наркотики через мембрану клітин [LaVan D;36], а також через епітеліальні та ендотеліальні бар’єри [Ferrari25], використовувати комбіновану терапію (з двох або більше препаратів) [Zhang; 54]. Іони магнію необхідні для стабілізації РНК. Mg2+ стабілізує структуру транспортної РНК. Дефіцит магнію призводить до часткової дисоціації (розпаду) РНК, сповільнює синтез білка, що, в свою чергу, впливає на синтез структурних молекул, наприклад, колагенів, еластинів тощо [Торшин 15]. Наномагній належить до біосумісних матеріалів [GuF; ZhangN27, 55].

Вибір лікарських засобів для цілеспрямованої доставки речовини в клітину вимагає ретельного вивчення. Поверхня тканин організму сприяє проникненню та міжтканинному і міжклітинному поглинанню лікарських препаратів, що дозволяє значно впливати на терапевтичну ефективність і вивчити вплив наноструктурованих частинок магнію на організм [Omid 41].

Іони магнію можуть осідати на негативно заряджених ланцюжках полісахаридів, приєднаних до протеогліконів [Торшин 15]. У деяких випадках біомолекули приєднуються до поверхні наночастинок (в залежності від властивостей) шляхом електростатичних, гідрофільних та гідрофобних взаємодій або хімічного синтезу чи генно-інженерними методами [HuangX34]. Хоча щільна функціоналізація молекулами ДНК пов’язана із низкою труднощів, шляхом застосування наночастинки 2 нм вдалося досягти певного успіху. Гібридизація з комплементарними послідовностями призводить до агрегації наночастинок. Це супроводжується зміною забарвлення, що реєструються спектрофотометрично. При незначних концентраціях ДНК, що визначається порядку 1·10-15 моль, можливе застосування „срібного підсилення” [HanX; HouS-Y; Thaxton29, 30, 49].

Методика, заснована на агрегації наночастинок, має ще одну перевагу: інтервал температури плавлення (тобто температури, при якій комплементарні зв’язки розриваються) гібридизованих ДНК стає невеликим. Розрив комплементарних зв’язків відбувається стрибкоподібно, змінюються й оптичні властивості розчину (зміна кольору: довжини хвилі, при якій спостерігається максимальне оптичне поглинання). При цьому, сама температура плавлення значно залежить від комплементарності. Виявляються неспівпадання одного або кількох нуклеотидів. Метод, що заснований на використанні наночастинок магнію, є перспективним для застосування в клінічній практиці, так як дозволить виявляти збудники вірусних хвороб, злоякісні новоутворення на ранніх стадіях розвитку з проведенням ефективного лікування без використання складних методик і дорогого обладнання [DingY24].

Наномагній використовують у дослідах зі зниженням температури розпаду ДНК, тобто її денатурації. Нанокластери амінопропілфункціоналізованого магнію філосілікату (phyllosilicate) були підготовлені у воді за допомогою пілінгу. Пілінг – це поверхневе очищення зовнішніх шарів покриву частинки для покращення якості хімічних реакцій. Для підготовки досліду використовували нанокластери в якості блоків на основі ДНК-гібридної структури, впорядкованих нанокомпозитів або витягнутої нанопроволоки. Нанопроводи складаються з ізольованих молекул ДНК-м або плазмідів ДНК, що вкриті ультратонким шаром органічного клею. Цей шар виконує функцію захисної оболонки. Нанокомпозити мають в своєму складі вставні моношари молекули ДНК порівняно невеликої довжини (700 пар нуклеотидів). Теплова стабілізація біомолекул суттєво обмежена, тому шар органічного клею може бути корисним агентом для підвищення хімічної, термічної і механічної стабільності нанопотенціалу блоків молекул ДНК [PatilA; 42].

На основі вище описаних дослідів можна зробити висновок, що наномагній проявляє різноманітні властивості, тому привертає увагу дослідників [LiongM; RuhlandNh; Weissleder; ZindargR;38, 46, 51, 57].

Заключення. Магній широко використовують як ефективний засіб для лікування хвороб та профілактики захворювань, забезпечення нормальної розумової та психологічної діяльності. Магній та наномагній – це не тільки сировина для розробок лікарських препаратів та речовин з новими властивостями, але і основа для застосування у різних галузях діяльності людини. Наномагнію притаманні своєрідні властивості, що дають можливість синтезувати нові сполуки. Токсичність наномагнію залежить від розмірів частинки. Застосування препаратів наномагнію може мати місце у виготовленні лікарських засобів після детального вивчення впливу на організм. Не зважаючи на те, що ведуться активні дослідження даної речовини, не достатньо вивчено вплив наночастинок магнію на організм тварини і людини, а також зовнішнє середовище.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

  1. Акарачкова Е.С. Дефицит магния: клиника, диагностика, терапия // Фарматека. – 2007. – Т. 20. – С. 25 –30.

  2. Акарачкова Е.С. Оценка эффективности применения Магне В6 у пациентов с клиническими проявлениями стресса // Трудный пациент. – 2008. – Т.6, № 2-3. – С. 43-46.

  3. Андреев Н.А., Моисеев В.С. Антагонисты кальция в клинической медицине. – М.: Фарммедио, 1995. – 158 с.

  4. Андрианова М.Ю., Дементьева И.И., Мальцева А.Ю. Магний и его баланс (обзор литературы) // Анестезиология и реаниматология. – 1995. – №6. – С. 73-76.

  5. Боброва Е.В. Кишечная абсорбация магния и антигипертензивная эффективность антагонистов кальция // Укр. кардіол. журн. – 1999. – №2. – С. 35-338.

  6. Боброва Е.В. Регуляция обмена магния при эссенциальной гипертензии // Укр. кардіол. журн. – 1997. – N.4, вып. 2. – С. 56-59.

  7. Горецкий В.В., Талибов О.Б. Препараты магния в медицинской практике. Малая энциклопедия магния. – М.: Медпрактика-М, 2007. – 44 с.

  8. Горчакова Н.А., Ткачук В.В. Влияние сердечних гликозидов и никотинамида на содержание кальция и магния в миокарде и печени крыс при гемической гипоксии // Фармакология и токсикология: Сборник научных трудов. – К.: Здоров’я, 1986. – С. 35-37.

  9. Гусев А. И. Наноматериалы, наноструктуры, нанотехнологии. – М.: ФИЗМАТЛИТ, 2-е изд., испр., 2007. – 416 с.

  10. Коломиец В.В., Боброва Е.В., Пархоменко Т.А. и соавт. Диетическое потребление кальция, магния, фосфора и риск развития артериальной гипертензии // Укр. кардіол. журн. – 1995. – №1. – С. 80-84.

  11. Кошелева Н.Г., Никологорская Е.В. Профилактика гипертензивных форм гестоза с помощью Магне-В6 при невынашивании беременности в анамнезе // Рос. вестн. акушера-гинеколога. – 2005. – №1. – С. 40-42.

  12. Кулиненков О.С. Фармакология и физиология силы. – М.: Медпрессинформ, 2004. – 308 с.

  13. Межевитинова Е.А., Акопян А.Н. Магнийдефицитные состояния в гинекологической практике: клиническая оценка и методы корекции // Вопросы гинекологии, акушерства и перинатологии. – 2007. – Т.4, № 91. – 98 с.

  14. Скальный А.В. Магний, энергия жизни, уверенность, сила. – Мед. эксперт. пресс, 2004 – 104 с.

  15. Торшин И.Ю., Громова О.А., Рудаков К.В. Систематический анализ молекулярних механизмов воздействия магния на дисплазии соединитильной ткани // Клиническая фармакология и фармакоэкономика. –2009. – №1. – С. 42, 43, 44, 48.

  16. Чекман І.С. Нанофармакологія: експериментально-клінічний аспект // Лікарська справа. Врачебное дело. – 2008. – № 3–4. – С. 104-109.

  17. Чекман І.С., Белєнічев І.Ф., Горчакова Н.А. і співав. Магнійвмісні препарати: фармакологічні властивості, застосування. – Запоріжжя, Київ: Вид-во ЗДМУ, 2007. – 124 с.

  18. Чекман И.С., Горчакова Н.А., Николай С.Л. Магний в медицине. – Кишенев: Штиинца, 1992. – 102 с.

  19. Чекман І.С., Каплинський С.П., Небесна Т.Ю. і співав. Фармакологічний, токсикологічний і клінічний аспекти наномедицини // Фармакологія та лікарська токсикологія. – 2008. – Т.4, №5. – С. 3-9.

  20. Чекман І.С., Корнєйкова Я.М., Загородний М.І., Кардаш М.І.. Квантові мітки: клінічні та фармакологічні аспекти // Мистецтво лікування. – 2008. – Т.50, №4. – С. 72-74.

  21. Школьникова М.А., Чупрова С.Н., Каменин А.А. и др.. Метаболизм магния и терапевтическое значение его препаратов. – М.: Изд. Медпрактика, 2004. – 28 с.

  22. Baptista P., Pereira E., Eaton P. et al. Gold nanoparticles for the development of clinical diagnosis methods // Anal. Bioanal. Chem. – 2008. – Vol. 391. – P. 943-950.

  23. Coon J. J., Shabanowitz J., Hunt, D. F. et al. Electron transfer dissociation of peptide anions // J. Am. Soc. Mass Spectrom. – 2005. – Vol. 16. – P. 880-882.

  24. Ding Y., Liu J., Wang H. et al. A piezoelectric immunosensor for the detection of α-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial // Biomaterials. – 2007. – Vol. 28. – P. 2147-2154.

  25. Ferrari M. Cancer nanotechnology: opportunities and challenges // Nat. Rev. Cancer. – 2005. – Vol. 5. – P. 161-171.

  26. Ge Y., Lawhorn B. G., El Naggar M. et al. Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry // J. Am. Chem. Soc. – 2002. – Vol. 124.– P. 672-678.

  27. Gu F., Zhang L., Teply B. A. et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers // Proc. Natl. Acad. Sci. U.S.A. – 2008. – Vol. 105. – P. 2586-2591.

  28. Gueux E., Azais-Braesco V., Bussiere V. Effect of magnesium deficiency on triacylglycerolrich lipoprotein and tissue susceptibility to peroxidation in relation to vitamin E content // Brit. J. Nutr. – 1996. – Vol. 74, N. 6. – P. 849-856.

  29. Han X. M., Jin M., Breuker K. et al. Extending top-down mass spectrometry to proteins with masses greater than 200 kDa // Science. – 2006. – Vol. 314. – P. 109-112.

  30. Hou S-Y., Chen H-K., Chen H-C. et al. Development of zeptomole and attomolar detection sensitivity of biotin-peptide using a dot-blot gold nanoparticle immunoassay // Anal. Chem. – 2007. – Vol. 79. – P. 980 – 985.

  31. Hu J., Bando Y., Zhan J. et al. carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires // Nano Letters. – 2006. – Vol. 6, № 6. – P. 1136-1140.

  32. Huang X., El-Sayed I. H., Wan Q et al. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: a potential cancer diagnostic marker // Nano Let. – 2007. – Vol. 7, №6. – P. 1591-1597.

  33. Huang X., El-Sayed I. H., Wan Q. et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods // J. Am. Chem. Soc. – 2006. – Vol. 128, №6. – P. 2115-2120.

  34. Huang X., Jain P. K., El-Sayed I. H. et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles // Lasers. Med. Sci. – 2008. – Vol. 23. – Р. 217-228.

  35. Jain P. K., Lee K. S., El-Sayed I. H. et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine // J. Phys. Chem. В. – 2006. – Vol. 110, №14. – Р. 7238-7248.

  36. LaVan D. A.; McGuire, T.; Langer, R. Small-Scale Systems for in vivo Drug Delivery // Nat. Biotechnol. – 2003. – Vol. 21. – P. 1184-1191.

  37. Lee J. S., Seferos D. S., Gilijohan D. A. et al. Thermodynamically controlled separation of polyvalent 2-nm gold nanoparticle-oligonucleotide conjugates // J. Am. Chem. Soc. – 2009. – Vol. 30, №16. – Р. 5430-5431.

  38. Liong M., Lu J., Kovochich M. et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery // ACS Nano. – 2008. – Vol.2. – P. 889-896.

  39. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting // Adv. Enzyme Regul. – 2001. – Vol. 41, №1. – P. 189-207.

  40. Moore A., Marecos E., Bogdanov A. et al. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model // Radiology. – 2000. – Vol. 214. – P. 568-574.

  41. Omid C. Farokhzad, Robert L. Impact of nanotechnology on drug delivery // Acsnano. Farokhzzad and Langer. – 2009. – Vol. 3, №.1. – P. 16-20.

  42. Patil A.J., Li M., Dujardin Е., Mann S. Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks // Nano Letters. – 2007. – Vol. 7, № 9. – P. 2660-2665.

  43. Resnick L.M. Cellular calcium and magnesium metabolism in pathophysiology and treatment of hypertension and related metabolic disordes // Am. J. Med. – 1992. – Vol. 93, № 2. – P. 11-20.

  44. Resnick L.M. 1. Dicturbances of calcium and magnesium metabolism in essential hypertension; 2. Ionic disturbances of calcium and magnesium metabolism: in essential hypertension // Hypertension: pathophysiology, diagnosis and management – 1995. – 2-nd Edition, – Vol.1, № 2. – P. 1169-1191.

  45. Rosenberg R.A., Shenoy G. K. Getting to the core of the problem: оrigin of the luminescence from (Mg,Zn) O heterostructured nanowires richard. – 2007. – Vol. 7, № 6. – Р. 1521-1525;

  46. Ruhland Th., Simon D. Nielsen S.D., Holm P., Christensen C.H. Christensen nanoporous magnesium aluminometasilicate tablets for precise, controlled, and continuous dosing of chemical reagents and catalysts: applications in parallel solution-phase synthesis // J. Comb. Chem. – 2007. – Vol. 9. – P. 301-305.

  47. Sönnichsen G., Alivisatos P. A. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy // Nano Let. – 2005.– Vol. 5, №2. – P. 301-304.

  48. Syka J. E. P., Coon J. J., Schroeder M. J. et al. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry // Proc. Natl. Acad. Sci. U.S.A. – 2004. – Vol. 101. – P. 9528-9533.

  49. Thaxton C. S., Georganopoulou D. G., Mirkin C. A. Gold nanoparticle probes for the detection of nucleic acid targets // Clin. Chim. Act. – 2006. – Vol. 363. – P. 120-126.

  50. Watkins D.V., Jahangeer S., Floor M.K., Alabaster 0. Magnesium and calcium absorption in Fisher - 334 rats influenced by changes in dietary fibre (wheat bran), fat and calcium // J. Magn. Res. – 1992. – Vol. 5, №1. – P. 15-21.

  51. Weissleder R., Elizondo G., Wittenberg J. et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. // Radiology. – 1990. – Vol. 175, №2. – P. 489-493.

  52. Whitesides G. M. The “Right” size in nanobiotechnology // Nat. Biotechnol. – 2003. – Vol. 21. – P.1161-1165.

  53. Xiangdong Y., Chengzhang W., Aijun D. et al. Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium // J. Am. Chem. Soc. – 2007. – Vol. 129. – P. 15650-15654.

  54. Zhang L., Gu F. X., Chan, J. M. et al. Nanoparticles in medicine: therapeutic applications and developments // Clin. Pharmacol. Ther. – 2008. – Vol. 83. – P. 761-769.

  55. Zhang N., Chittasupho C., Duangrat C et al. PLGA nanoparticle peptide conjugate effectively targets intercellular cell- adhesion molecule-1 // Bioconjugate Chem. – 2008. – Vol. 19. – P. 145-152.

  56. Zimmer C., Weissleder R., Poss K. et al. MR imaging of phagocytosis in experimental gliomas // Radiology. –1995. – Vol. 197, №2. – P. 533-538.

  57. Zinbarg R. G., Barlov D.N., Leibovitz M. et al. The DSM-3 field criteria for mixed anxiety-depression // Am. J. Psychiatry. – 1994. – Vol. 151. – P. 1153-1162.