Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
дипломная работа.doc
Скачиваний:
186
Добавлен:
09.03.2016
Размер:
175.14 Кб
Скачать

10 Методы решения уравнений, содержащих целые или дробные части

К числу нестандартных относятся методы решения уравнений, которые содержат целые и (или) дробные части действительных чисел. В программе школьной математики методы решения таких уравнений не изучаются. В настоящем разделе применение существующих методов и приемов иллюстрируется на примерах решения ряда уравнений.

Целой частью действительного числа (илиАнтье) называется наибольшее целое число, не превосходящее , и это число обозначается. Очевидно, чтоРазностьназывается дробной частью числа(илиМантисса) и обозначается через Из определения следует, чтоКроме того, справедливо равенство

(10.1)

Например, имеет место

Отметим некоторые свойства введенного выше понятия целой части действительного числа.

Для произвольных действительных чисел имеет место неравенство

Кроме того, для любого действительного числа справедливо

. (10.2)

Перейдем теперь к рассмотрению уравнений, содержащих целую и (или) дробную части неизвестной переменной.

Задачи и решений

Пример 10.1. Решить уравнение

(10.3)

Решение. Поскольку являются целым числом, то- тоже целое число. Следовательно, числотакже является целым. В таком случаеи уравнение (10.3) принимает видЦелыми корнями последнего уравнения являются

Ответ:

Пример 10.2. Решить уравнение

(10.4)

Решение. Рассмотрим последовательно три случая.

Если , т.е. решением уравнения (10.4) могут быть только

Пусть тогда из уравнения (10.4) следует, чтоТак как, то получаем систему неравенств

Решением данной системы неравенств являются .

Если Следовательно, уравнение (10.4) не имеет корней среди

Ответ:

Пример 10.3. Решить уравнение

(10.5)

Решение. Используя свойство (10.2), можно записать

Так как то, складывая почленно три приведенные выше неравенства, получим

Отсюда, принимая во внимание уравнение (10.5), следуют неравенства

(10.6)

Поскольку в этом случае следует, что. Так как- целое число, то отсюда получаем, чтоСледовательно, имеем

Из уравнения (10.5) следует, что – целое число. Так както остается лишь проверить целые значенияНетрудно установить, что решениями (10.5) являются

Ответ:

Пример 10.4. Решить уравнение

(10.7)

Решение. Из формулы (10.1) следует, что В этой связи уравнение (10.7) можно переписать, как

Отсюда следует уравнение

(10.8)

Очевидно, что является корнем уравнения (10.8). Положим, чтоТогда разделим обе части уравнения (10.9) наи получим уравнение

(10.9)

Рассмотрим последовательно несколько случаем.

Если В таком случае

Если

Если

Если Отсюда следует, что уравнение (10.9) корней не имеет.

Следовательно, уравнение (10.7) имеет единственный корень

Ответ:

Пример 10.5. Решить уравнение

(10.10)

Решение. Решая тригонометрическое уравнение (10.10), получаем

­(10.11)

где – целое число. Из уравнения (10.11) получаем совокупность двух уравненийЛевые части обоих уравнений являются целыми числами, в то время как их правые части (за исключением случаяв первом уравнении) принимают иррациональные значения.

Следовательно, равенство в уравнениях совокупности может иметь место только в том случае, когда правые их части являются рациональными (точнее, целыми) числами. А это возможно лишь в первом уравнении при условии, что В этом случае получаем уравнениеоткуда следует

Ответ:

Пример 10.6. Решить уравнение

(10.12)

Решение. Левая часть уравнения (10.12) принимает только целые значения, поэтому число является целым.

Так как то при любом целоммногочленпредставляет собой произведение трех последовательно расположенных на числовой осицелых чисел, среди которых имеется хотя бы одно четное число и число, кратное трем. Следовательно, многочленделится набез остатка, т.е.является целым числом.

В этой связи и уравнение (10.12) принимает видили

(10.13)

Так как то корнями уравнения (10.13) являются

Ответ:

Пример 10.7. Доказать равенство

(10.14)

для произвольного действительного числа

Доказательство. Любое число можно представить или какгде- целое число и

Рассмотрим два возможных случая.

  1. Пусть Так как

и

  1. Пусть тогда

и

Таким образом, равенство (10.14) выполняется для каждого из двух рассмотренных выше случаем. Следовательно, равенство (10.14) доказано.

Заключение

В результате работы над дипломным проектом был проведен анализ решения нестандартных типов решения тестовых задач. Все рассмотренные задачи, решаемые нестандартными методами, классифицированы по следующим типам:

  1. метод функциональной подстановки

  2. методы, основанные на применении численных неравенств,

  3. метод тригонометрической подстановки;

  4. методы, основанные на монотонности функций,

  5. методы решения функциональных уравнений,

  6. методы, основанные на применении векторов,

  7. комбинированные методы,

  8. методы, основанные на использовании ограниченности функций,

  9. методы решения симметрических систем уравнений,

  10. методы решения уравнений, содержащих целые или дробные части числа.

В каждом из этих типов рассмотрены конкретные примеры и методы их решения.

Материал, содержащийся в дипломной работе, представляет собой основу методического пособия, которое можно при определенной доработке, внедрять как в школьный процесс, так и при подготовке абитуриентов к поступлению.

Список использованных источников

  1. Азаров, В.И. Функциональные методы решения задач [текст] : учебное пособие / В.И. Азаров, О.П. Тавгень, В.С. Федосенко. – Мн. :БГУ,1994.

  2. Азаров, А.И Экзамен по математике: руководство к решению задач [текст] : справочное пособие / С.В. Пруцко, В.С. Федосенко. – Мн. :ТетраСистем, 2001.

  3. Ивлев, Б.М. Задачи повышенной трудности по алгебре и началам анализа [текст] : учебное пособие / Б.М. Ивлев, А.М.Абрамов, Ю.П. Дудницин, С.И. Шварцбург. -М. :Просвещение, 1990.

  4. Габринович, В.А. Решим любую задачу [текст] : учебное пособие / В.А. Габринович, В.И. Громак. – Мн. :Асар, 1996.

  5. Мандрик, П.А. Экзамен по математике на пять [текст] : учебное пособие / П.А. Мандрик, В.И. Репников. – Мн. :тетраСистемс, 1999.

  6. Олехник, С.Н. Нестандартные методы решений уравнений и неравенств [текст] : учебное пособие / С.Н. Олехник, М.К. Потапов, П.И. Пасаиченуо. – М. :МГУ, 1991.

  7. Пруцко, С.В. Экзамен по математике [текст] : руководство к решению задач : учебное пособие / С.В. Пруцко, А.И. Азаров, В.С. Федосенко. – МН. :тетраСистемс, 2001.

  8. Пруцко, С.В. руководство к решению конкурсных задач по математике [текст] : учебное пособие / С.В. Пруцко, А.И. Азаров, В.С. Федосенко. – МН. :тетраСистемс, 1999.

  9. Сборник задач по математике для поступающих во втузы [текст] / под редакцией М.И.Сканави. – Мн. :Высшая школа, 1990.

  10. Супрун, В.П. Избранные задачи повышенной сложности по математике [текст] / В.П. Супрун. Мн. :Полымя, 1998.

  11. Супрун, В.П. Нестандартные методы решения задач по математике [текст] / В.П. Супрун. –Мн. :Полымя, 2000.