Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
HCS12 с применением языка С - royallib.ru.doc
Скачиваний:
118
Добавлен:
11.03.2016
Размер:
2.28 Mб
Скачать

5.7. Управление электрическим двигателем

В главе 4 мы рассмотрели применение способа широтно-импульсной модуляции для регулирования напряжения, приложенного к обмоткам электрического двигателя. Изменяя коэффициент модуляции, мы изменяли длительность импульсов напряжения на двигателе, сохраняя частоту следования этих импульсов неизменной. В результате, изменялось среднее значение напряжения на двигателе, и, как следствие, скорость его вращения. При обсуждении мы отметили, что ШИМ-сигнал может быть сформирован на одном из выходов МК, однако его мощности не будет достаточно для приведения двигателя во вращение. Поэтому между выходом МК и двигателем должны быть специальные электронные цепи, которые позволяют усилить по мощности, формируемый микроконтроллером ШИМ-сигнал. Мы рассмотрим примеры таких цепей в данном параграфе.

5.7.1. Силовые полупроводниковые ключи

Для подключения к обмоткам двигателя под управлением МК источника напряжения достаточной мощности могут быть использованы различные приборы: электромагнитные реле, твердотельные реле, биполярные транзисторы и некоторые другие типы транзисторов. В нашем примере мы будем использовать для этой цели мощные полевые транзисторы. В русскоязычной литературе их называют мощными МДП-транзисторами (МДП — Металл-Диэлектрик-Полупроводник), в англоязычной литературе используют аббревиатуру MOSFET (Metal Oxide Semiconductor Field-Effect Transistor). Мы остановились на этом типе полупроводниковых приборов потому, что в современных коммутаторах для двигателей малой и средней мощности используются именно эта элементная база.

Перед тем, как исследовать электронную схему усиления мощности, необходимую для управления электрическим двигателем от микроконтроллера, рассмотрим принцип действия МДП-транзистора.

МДП-транзистор — это управляемый напряжением полупроводниковый ключ. Он обладает очень высоким сопротивлением цепи управления, что удобно для микроконтроллера, который не может формировать больших вытекающих токов. В открытом состоянии падение напряжения на транзисторе мало по сравнению с другими типами полупроводниковых ключей аналогичной мощности. Поэтому энергия, рассеиваемая МДП-транзистором в режиме проводимости, также относительно невелика, что обеспечивает высокий коэффициент полезного действия полупроводникового коммутатора.

МДП-транзистор может работать как в режиме усиления сигнала, так и в ключевом режиме. Мы будем использовать МДП-транзистр в ключевом режиме для коммутации напряжения питания к обмотке двигателя во время длительности импульса ШИМ-сигнала.

МДП-транзистор имеет три электрода: сток (Drain), исток (Souse) и затвор (Gate). Затвор — это управляющий электрод транзистора, в то время как сток и исток — это электроды, по которым протекает коммутируемый транзистором ток. Схемное обозначение МДП-транзистора с каналом n-типа приведено на рис. 5.19,а. При отсутствии напряжения между затвором и стоком канал для протекания тока между стоком и истоком внутри полупроводниковой структуры транзистора отсутствует. Если на затвор подать положительное напряжение относительно истока, то внутри транзистора формируется канал для протекания тока от стока к истоку. Если снять с затвора напряжение, то этот канал исчезнет, и транзистор не сможет проводить ток между истоком и стоком. Мы получили управляемый полупроводниковый ключ!

а) Условное графическое обозначение n-канального МДП-транзистора (MOSFET)

б) Схема полупроводникового коммутатора для управления электрическим двигателем от МК

в) Схема управления МДП-транзистором с использованием твердотельного реле

Рис. 5.19. Управление электрическим двигателем от МК

В нашем примере мы использовали МДП-транзисторы IRF530 компании International Rectifier. Максимальное значение тока стока ID для этого транзистора равно 14 А. Это означает, что мы можем коммутировать нагрузку с номинальным током 14 А под управлением маломощного сигнала с выхода микроконтроллера. Отметим, что в настоящее время подобные мощные МДП-транзисторы с каналами n- и p-типа выпускаются на токи свыше 100 А.

На рис. 5.19,б показана схема включения электрического двигателя с управлением от микроконтроллера. Резистор R = 10 кОм в цепи управления обеспечивает путь для рассасывания заряда из области управляющего электрода, когда напряжение на затворе становится равным нулю. Также в схеме присутствует защитный диод, который установлен параллельно двигателю. Мы обсудим назначение этого диода несколько позже, при изучении схемы инвертора (раздел 5.7.3). В нашем примере на затвор транзистора подается управляющее напряжение около 5 В. При этом транзистор IRF530 может проводить ток около 4 А. Для увеличения тока нагрузки до 14 А следует повысить управляющее напряжение. Однако используемый в примере электрический двигатель приводится во вращение напряжением 12 В при токе нагрузки 1 А. Поэтому параметры напряжения управления от микроконтроллера для нашего случая вполне удовлетворяют требованиям МДП-транзистора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]