Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы ИМ экзамен.doc
Скачиваний:
107
Добавлен:
19.03.2016
Размер:
1.24 Mб
Скачать
  1. Переходное и установившееся поведение стохастического процесса

Рассмотрим выходной стохастический процесс Y1,Y2,… .

Пусть известна функция распределения случайной величины для заданных условий:

Ft(y| I) = P(Yt <= y| I) при t =1,2,… ,

где y – вещественное число , I представляет начальные условия , используемые для того, чтобы начать моделирование в момент времени 0.

Условная вероятность P(Yt <= y | I) – это вероятность того, что событие {Yt <= y} возникнет при заданных начальных условиях I.

Функция Ft(y|I) – это переходное распределение выходного процесса в дискретный момент времени t при начальных условиях I.

Ft(y|I) будет различной для каждого значения t и каждого набора начальных условий I.

Если система функционирует бесконечно долго, то влияние начального состояния системы на ее текущее поведение исчезает, т.е. вероятность пребывания системы в различных состояниях не зависит от времени.

Такой процесс называется стационарным или установившемся.

На практике мы можем установить момент времени, начиная с которого распределение случайных величин Yk+1, Yk+2 будут приблизительно одинаковыми.

  1. Оценка средних значений при переходном режиме моделирования

Предположим, что мы выполняем n-независимых повторных прогонов, каждый повторный прогон завершается событием Е и начинается при одних и тех же начальных условиях.

Допустим, что существует одна искомая оценка критерия Xj.

Пусть Xj будет случайной величиной, определенной в ходе j-повторного прогона, j = 1,n.

Тогда Xj являются независимыми и одинаково распределенным случайными величинами.

Понятие об интервальном оценивании. Доверительная вероятность и доверительный интервал.

Доверительным интервалом для параметра Х называется интервал (X1;X2), содержащий истинное значение параметра с заданной вероятностью p = 1 – α: P(X1<X<X2) = 1-α.

Число p = 1 – α называется доверительной вероятностью, а значение α – уровнем значимости.

Замечание:

Нижняя X1 и верхняя X2 граница доверительного интервала определяется по результатам наблюдений и, следовательно, является случайной величиной. Поэтому говорят, что доверительный интервал «накрывает» оцениваемый параметр с вероятностью 1-α.

Пусть необходимо получить точечную оценку и доверительный интервал для среднего μ = Е(Х), где Х – случайная величина, определенная при повторном прогоне модели. Выполним n-независимых повторных прогонов имитационной модели и в результате получим независимые и одинаково распределенные случайные величины Х12, …, Хn.

Выборочная оценка μ: Xср(n) = ∑xi/n, i = 1,n (9.1)

Выборочная оценка дисперсии: S2(n) = ∑(Xi – Xср(n))2/(n-1), i= 1,n (9.2)

Приближенный 100(1-α) – процентный (0 < α < 1) доверительный интервал для μ:

Xср(n) +/- tn-1,1-α/2 sqrt(S2(n)/n) (9.3)

tn-1,1-α/2 – это критическая точка для t-распределения Стьюдента с (n-1) степенями свободы.

  1. Получение заданной точности при переходном режиме моделирования

μ=E(X) с заданной погрешностью (точностью), если оценка такова, что для нее, то считаем что имеет абсолютную погрешность β. Если будем выполнять повторные прогоны ИМ до тех пор пока половина длины 100(1-α)-процентного доверительного интервала будет меньше или равна β, то

1-α ≈ Р(-половина длины≤μ≤+половина длины)=Р(|-μ|≤половина длины)≤Р()Предположим, что мы получили доверительный интервал для μ на основе фиксированного количества повторных прогонов ИМ n. Если оценка дисперсии S2(n) не будет существенно изменятся по мере увеличения числа повторных прогонов, то приближенное количество повторных прогонов , необходимых для получения абсолютной погрешности β определяется:

Т.е. количество повторных прогонов определяется на основе многократного увеличения i на 1. Допустим необходимо оценить ожидаемую среднюю задержку для клиентов банка (с 5 кассами и одной очередью) с абсолютной погрешностью 0,25 и доверительным уровнем 90%. По выполненным 10 прогонам ИМ получаем: .

Относительная погрешность определяется как отношение.Если построен доверительный интервал для µ на основании фиксированного количества повторных прогонов ИМ n, и оценки мат. Ожидания и дисперсии существенно не меняются по мере увеличения числа повторных прогонов, получаем:

(б)

Для модели банка количество необходимых повторных прогонов с относительной погрешностью 0,1 и доверительной вероятностью 90% составляет 27. Рассмотрим последовательную процедуру для получения оценки µ с указанной относительной погрешностью γ (0< γ <1) и доверительным уровнем 100(1-α)%. Изначально выбирается число повторных прогонов n>2, тогда половина длины доверительного интервала:.Последовательная процедура включает: Выполняем n0 повторных прогонов ИМ и задаем n=n0. Если , используем как точечную оценку для µ и завершаем работу (). В противном случае n=n+1, выполняем дополнительный прогон и на пункт 1. Соответственно (в)

Является приближенным 100(1-α)% доверительным интервалом для µ с искомой точностью.