Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК ПП.doc
Скачиваний:
102
Добавлен:
06.11.2018
Размер:
10.84 Mб
Скачать

Вопросы для самопроверки

1. Приведите схему замещения асинхронного двигателя.

2. Поясните термин «скольжение».

3. Приведите типовую характеристику мощности (момента) асинхронного двигателя от скольжения.

4. Запишите условия устойчивой работы асинхронного двигателя.

5. Как зависит момент асинхронного двигателя от напряжения?

6. Поясните термин «критическое напряжение» асинхронного двигателя.

7. Поясните термин «опрокидывание» двигателя.

8. Дайте определение узлу нагрузки.

9. Что такое комплексная нагрузка?

10. Что такое статические характеристики нагрузки?

11. Поясните термин «регулирующий эффект нагрузки».

12. Как представляются нагрузки при расчетах устойчивости?

13. Приведите типовые характеристики механизмов.

14. Какие механизмы имеют характеристику, не зависящую от скольжения?

15. Какие механизмы имеют вентиляторную характеристику?

16. Какими факторами определяется напряжение в узле нагрузки?

17. Какими факторами определяется частота в энергосистеме?

18. Как влияет изменение частоты на работу асинхронных двигателей?

19. Приведите критерии статической устойчивости нагрузки, получающей питание от одного источника.

20. Приведите критерии статической устойчивости нагрузки, получающей питание от нескольких источников.

2.4. Переходные процессы в узлах нагрузки при больших возмущениях

2.4.1. Влияние больших возмущений на режим нагрузки

К характерным переходным процессам относятся процессы, происходящие при пуске двигателей. Современные мощные двигатели, особенно асинхронные двигатели с короткозамкнутым ротором, имеют большие пусковые токи, поэтому одновременный пуск значительного количества двигателей, соизмеримых по суммарной мощности с мощностью остальной системы, может оказать существенное влияние на её режим.

При работе устройств АПВ и АВР возникают условия, когда после кратковременного перерыва питания затормозившиеся двигатели одновременно подключаются к источнику напряжения. В этом случае говорят уже о самозапуске двигателей. При самозапуске двигателей в узле нагрузки появляется ток, значительно больший нормального. Это ведёт к понижению напряжения в сети и к уменьшению вращающего момента двигателей. Если вращающие моменты двигателей окажутся больше моментов сопротивления механизмов, самозапуск будет успешным. В противном случае говорят о неуспешном самозапуске.

В системах электроснабжения с мощными резкопеременными нагрузками (электрическая тяга, прокатные станы и др.) имеют место мощные толчки тока, вызывающие колебания напряжения. При таких нагрузках в расчётах режимов систем возникают две задачи:

- определение условий, при которых работа резкопеременных нагрузок не приведет к недопустимым в соответствии с ГОСТ 13109-97 колебаниям напряжения в узле нагрузки;

- определение устойчивости самих двигателей при работе резкопеременной нагрузки.

2.4.2. Пуск асинхронных двигателей

Пуск двигателей в ход или пусковой режим электропривода, входящего в состав комплексной нагрузки, – это процесс перехода двигателей и соответственно рабочих механизмов из неподвижного состояния (ω=0, s=1) в состояние вращения с нормальной скоростью. Пуск является существенной частью режимов работы двигателей и относится к числу нормальных переходных процессов.

Во время пуска двигатель должен развивать вращающий момент, необходимый, во-первых, для преодоления момента сопротивления механизма, во-вторых, для создания определённой кинетической энергии вращающихся масс агрегата. В это время он потребляет от источника повышенное количество энергии, что и отражается в увеличении пускового тока. Кратность пускового тока по отношению к номинальному составляет для двигателя с короткозамкнутым током 5÷8.

Большие пусковые токи двигателей обусловливают повышенный нагрев его обмоток и соответственно ускорение старения изоляции. Если по технологическому процессу требуются частые пуски двигателя, то целесообразно применять специальные конструкции двигателей и различные мероприятия, облегчающие пуск.

Условия пуска обычно разделяют на легкие, нормальные и тяжёлые. При легких условиях пуска требуемый вращающий момент двигателя составляет 10-40 % от номинального; при нормальных условиях пуска – 50÷75 % номинального; при тяжёлых условиях – до 100 % номинального и выше (пуск компрессоров, дробильных барабанов, насосов с открытой задвижкой и др.).

Для управления пуском и ограничения пусковых токов могут применяться различные схемы пуска: прямой, автотрансформаторный, реакторный, частотный.

Прямой пуск (рис. 2.25,а) осуществляется подачей выключателем полного напряжения на двигатель. Преимуществом способа являются простота схемы и сокращение времени пуска. Применяется при пуске двигателей небольшой мощности.

Автотрансформаторный пуск осуществляется по схеме, показанной на рис. 2.25,б. Сначала включается выключатель В1. Двигатель начинает разгоняться при пониженном напряжении, потребляя сравнительно небольшой ток. После того, как асинхронный двигатель достигнет номинальных оборотов, а синхронный будет синхронизирован, включается выключатель В2, шунтирующий реактор, и на двигатель подается нормальное напряжение. Автотрансформаторный пуск применяется для двигателей средней мощности (до 12,5 МВт).

Автотрансформатор достаточно дорог и, кроме того, создает толчки намагничивающего тока при переключениях. Поэтому автотрансформаторный пуск применяется достаточно редко.

а) б) в) г)

Рис. 2.25. Схемы пуска двигателей: прямой (а), автотрансформаторный (б),

реакторный (в), частотный пуск (г)

Реакторный пуск производится в соответствии со схемой, приведённой на рис. 2.25,в. С помощью выключателя В1 двигатель подключается к сети через реактор. Двигатель начинает разгоняться и по мере уменьшения тока напряжение на двигателе возрастает за счёт снижения падения напряжения на реакторе. При достижении асинхронным двигателем номинальных оборотов включается шунтирующий выключатель В2. При реакторном пуске синхронного двигателя выключатель В2 включается после того, как двигатель войдёт в синхронизм.

Сопротивление реактора определяется по формуле

Хр=,

где Iдоп – величина, до которой нужно ограничить пусковой ток;

Iпуск – пусковой ток двигателя;

Uном – номинальное напряжение.

Недостаток схемы – достаточно большие затраты на пусковое оборудование. Схема применяется для пуска двигателей средней мощности (до 12,5 МВт).

Частотный пуск (рис. 2.25,г) производится подключением двигателя к преобразователю частоты (ПЧ). Изменением частоты и амплитуды выходного напряжения ПЧ добиваются плавного увеличения оборотов пускаемого двигателя. При этом никаких толчков потребляемого тока не происходит.

Схема частотного пуска используется для очень мощных двигателей, например для пуска в двигательном режиме обратимых синхронных машин гидроаккумулирующих электростанций.