Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все билеты.doc
Скачиваний:
19
Добавлен:
18.12.2018
Размер:
1.82 Mб
Скачать

2) Закон Сохранения Импульса

Импульсом называют векторную величину, равную произведению массы тела на ее скорость:

При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:

3) Закон Сохранения Механической Энергии

Если в замкнутой системе не действуют силы, трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной.

Всеобщий закон сохранения энергии :

Полная механическая энергия тела или замкнутой системы тел, на которые не действуют силы трения, остается постоянной.

Закон сохранения полной механической энергии является частным случаем всеобщего закона сохранения и превращения энергии:

Энергия тела никогда не исчезает и не появляется вновь: она лишь превращается из одного вида в другой.

Приращение потенциальной энергии брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела, приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

  • Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

- Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

- Упругая- Электронная упругая поляризация характерна для всех диэлектриков вне зависимости от их агрегатного состояния (газ, жидкость или твердое тело) и степени порядка структуры (кристалл либо аморфное тело), поскольку деформация электронных оболочек атомов в электрическом поле − их общее свойство. Электронные оболочки и ядра упруго смещаются друг относительно друга, поэтому такой вид поляризации часто называют деформационной поляризацией. Поскольку ядра в раз тяжелее электронов, то смещение испытывают в основном электроны, причем преимущественно валентные как более слабо связанные с ядром по сравнению с электронами более глубоких оболочек. Вследствие смещения электронных орбит поляризованная частица (атом или молекула) становится электрическим диполем с определенным наведенным (индуцированным) электрическим моментом, равным произведению заряда на величину смещения.

Вектор поляризации:

Вектор поляризации — векторная физическая величина, приведённый внешним электрическим полем дипольный момент единице объёма вещества, количественно характеристикидиэлектрической поляризации.

Обозначается буквой , в СИ измеряется в В/м.

 

,

 

где pei - электрический дипольный момент i-й молекулы;

n - общее число молекул в объеме DV.

Этот объем должен быть настолько малым, чтобы внутри него электрическое поле можно было считать однородным. Одновременно число n молекул в объеме DV должно быть достаточно велико для того, чтобы можно было применять статистические методы исследования.

Для однородного неполярного диэлектрика, находящегося в однородном электрическом поле:

Pe= n0 pe, 

где n0 - число молекул в единице объема,

pe - дипольный момент одной молекулы. 

Диэлектрическая поляризация обусловлена ​​смещением связанных зарядов во внешнем электрическом поле. Если выделить какой либо объём в диэлектрике, то в результате приложения поля на его поверхности могут возникнуть поверхностные электрические заряды σsur. Такие заряды могут возникнуть или благодаря смещению электронной оболочки относительно ядра атома, или же в результате переориентации молекул, которые имеют собственный дипольный момент.

Нормальную к поверхности составляющую вектора поляризации определяют как

где  — орт нормали к поверхности.

Можно ввести вектор электрической индукции , который удобен при описании электрического поля в сплошной среде:

[1].

Связь с электрическим полем

В основном зависимость между вектором поляризации и электрическим полем, которое обусловило поляризацию, линейна и задается тензором поляризованности.

.

Связь между векторами по-ляризации и электрического смещения в вакууме и среде:

10билет

Связь между силой и потенциальной энергией:

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

A = –(Eр2 – Eр1).

Спонтанная поляризация сегнетоэлектриков:

Сегнетоэле́ктрики (названы по первому материалу, в котором был открыт сегнетоэлектрический эффект — сегнетова соль) — твёрдые диэлектрики (некоторые ионные кристаллы ипьезоэлектрики), обладающие в определённом интервале температур собственным электрическим дипольным моментом, который может быть переориентирован за счёт приложения внешнего электрического поля. Сегнетоэлектрические материалы обладают гистерезисом по отношению к электрическому дипольному моменту.

В англоязычной литературе для обозначения явления применяется термин ферроэлектрики (образовано по аналогии с ферромагнетиками).

Типичный представитель сегнетоэлектриков — сегнетова соль, двойная соль винной кислоты KNaC4H4O6·4Н2О; именно её название лежит в основе термина «сегнетоэлектрик». К сегнетоэлектрикам с более простой структурой относят целый ряд кристаллов со структурой перовскита, например, титанат бария BaTiO3титанат свинца PbTiO3, а также их твердые растворы (цирконат-титанат свинца), ниобат лития LiNbO3.

Температура, при которой исчезает спонтанная поляризация (то есть собственный дипольный момент) и происходит перестройка кристаллической структуры, носит название температуры (точки) Кюри (ещё одна аналогия с ферромагнетиками). Переход через точку Кюри означает фазовый переход, а соответствующие фазы обозначаются как полярная (сегнетоэлектрик) и неполярная (параэлектрик[1] — нелинейный диэлектрик, не обладающий спонтанной поляризацией, относительная диэлектрическая проницаемость которого уменьшается с ростом температуры).

Спонтанная поляризация в сегнетоэлектриках в точке Кюри меняется либо непрерывно (переход второго рода, сегнетова соль), либо скачком (переход первого рода, титанат бария). Другие характеристики сегнетоэлектриков, такие как относительная диэлектрическая проницаемость, могут достигать в точке Кюри очень больших значений (104 и выше).

Вблизи точки Кюри в неполярной фазе выполняется закон Кюри — Вейсса, связывающий поляризуемость α и температуру T сегнетоэлектрика[2]:

где C и T0 — константы, определяемые видом сегнетоэлектрика. Величина T0 носит название температуры Кюри — Вейсса и очень близка к значению температуры Кюри. Если точек Кюри две, то вблизи каждой из них в неполярной фазе выполняется тот же закон. Вблизи верхней — в прежней форме, а вблизи нижней — в форме[2]:

Механизм приобретения дипольного момента в полярной фазе (фазе сегнетоэлектрика) может также различаться: возможен вариант как со смещением ионов (титанат бария; соответствующий фазовый переход называется переходом типа смещения), так и с упорядочиванием ориентации уже существующих в веществе диполей (дигидрофосфат калия,триглицинсульфат).

Применение:

Сегнетоэлектрические материалы (монокристаллы, керамика, плёнки) широко применяются в технике и в научном эксперименте. Благодаря большим значениям e их используют в качестве материала для конденсаторов высокой удельной ёмкости. Большие значения пьезоэлектрических констант обусловливают применение Сегнетоэлектрики в качествепьезоэлектрических материалов в приёмниках и излучателях ультразвука, в преобразователях звуковых сигналов в электрические и наоборот, в датчиках давления и др. Резкое изменение сопротивления вблизи температуры фазового перехода в некоторых Сегнетоэлектрики используется в позисторах для контроля и измерения температуры. Сильная температурная зависимость спонтанной поляризации (большая величина пироэлектрические константы) позволяет применять Сегнетоэлектрики в приёмниках электромагнитных излучений переменной интенсивности в широком диапазоне длин волн (от видимого до субмиллиметрового). Благодаря сильной зависимости e от электрического поля Сегнетоэлектрикииспользуют в нелинейных конденсаторах (варикондах), которые нашли применение в системах автоматики, контроля и управления. Зависимость показателя преломления от поля обусловливает использование Сегнетоэлектрики в качестве электрооптических материалов в приборах и устройствах управления световыми пучками, включая визуализацию инфракрасного изображения. Перспективно применение Сегнетоэлектрики в устройствах памяти вычислительных машин, дистанционного контроля и измерения температуры и др.

Билет 11.

 1.   Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить:

Если тело вращается вокруг неподвижной оси с угловой скоростью то линейная скорость i-ой точки равна , где , - расстояние от этой точки до оси вращения. Следовательно.

(5.11)

где  - момент инерции тела относительно оси вращения.

В общем случае движение твердого тела можно представить в виде суммы двух движений - поступательного со скоростью, равной скорости  центра инерции тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр инерции. При этом выражение для кинетической энергии тела преобразуется к виду

(5.12)

где  - момент инерции тела относительно мгновенной оси вращения, проходящей через центр инерции.