Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все билеты.doc
Скачиваний:
19
Добавлен:
18.12.2018
Размер:
1.82 Mб
Скачать

Билет 14

1) Работа и кинетическая энергия вращающегося тела.

1. Работа и мощность при вращении твердого тела.

Работа и мощность при вращении твердого тела.

Найдем выражение для работы при вращении тела. Пусть сила приложена в точке , находящейся от оси на расстоянии , — угол между направлением силы и радиус-вектором . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол точка приложения проходит путь и работа равна произведению проекции силы на направление смещения на величину смещения:

.

Модуль момента силы равен:

,

тогда получим следующую формулу для вычисления работы:

.

Таким образом, работа при вращении твердого тела равна произведению момента действующей силы на угол поворота.

2. Кинетическая энергия вращающегося тела.        Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

,

 (6.4.1)

 

       Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i-й точки , Ri – расстояние до оси вращения. Следовательно,

 

,

 (6.4.2)

 

       Сопоставив (6.4.1) и (6.4.2), можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.        В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью  vc  и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

 

,       

 (6.4.3)

 

       Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

2) Правила Кирхгофа для разветвленных цепей

Первое правило Киргофа относится к узлам цепи. Узлом называется точка, в которой сходится более чем два проводника (рис. 4.4). Ток, текущий к узлу, считается положительным, текущий от узла имеет противоположный знак. Первое правило Кирхгофа гласит, что алгебраическая сумма токов, сходящихся в узле, равна нулю:

Это правило вытекает из уравнения непрерывности, т. е., в конечном счете, из закона сохранения заряда. Число уравнений, составленных по первому правилу Кирхгофа, должно быть на одно меньше, чем число узлов в исследуемой цепи. Этим обеспечивается линейная независимость получаемых уравнений.

Второе правило относится к любому выделенному в разветвленной цепи замкнутому контуру (например, 1-3-2) (см. рис. 4.5). Зададим направление обхода, изобразив его стрелкой. Применим к каждому из неразветвленных участков контура закон Ома:

При сложении этих выражений получается одно из уравнений

;

которое выражает второе правило Кирхгофа: для любого замкнутого контура алгебраическая сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

Подобные уравнения могут быть составлены для всех замкнутых контуров, существующих в данной разветвленной цепи, однако их число должно быть ограничено уравнениями для независимых контуров, в которых встречается хотя бы один ток, не входящий в остальные.

При составлении уравнений согласно второму правилу Кирхгофа токам и ЭДС нужно приписывать знаки в соответствии с выбранным направлением обхода.

Например, ток l1 нужно считать положительным, он течет по направлению обхода. ЭДС 2 также нужно приписать знак "плюс", так как она действует в направлении обхода. Току l3 и ЭДС 3 приписывается знак "минус".

На практике, при решении задач, при составлении уравнений направления токов выбирают произвольно и в соответствии с этим применяют правило знаков.

Действительное направление токов определится решением задачи: если какой-либо ток окажется положительным, то его направление выбрано правильно, если отрицательным, то в действительности он течет противоположно выбранному направлению.

Число независимых уравнений, составленных в соответствии с первым и вторым правилами Кирхгофа, равно числу различных токов, текущих в разветвленной цепи. Поэтому, если заданы ЭДС и сопротивления, то могут быть вычислены все токи.

Вариант №15

1)Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где  — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта,  — импульс частицы.

Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

2)Магнитное поле тока- поле которое образуется вблизи проводника с током.

Вектор магнитной индукции – силовая характеристика магнитного поля – физическая величина которая численно равна максимальной силе ампера которая действует на проводник длинной 1м. по которому идет ток 1А.

B= .

Вектор магнитной индукции- силовая характеристика магнитного поля которая численно равна максимальному моменту который действует на замкнутый контур площадью 1м2 по которому идет ток 1А.

B= .

Напряжённость магнитного поля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

, где μ0 - магнитная постоянная

Закон Био — Савара — Лапласа.

.

r-радиус вектор проведенный от элемента проводника dl в точку наблюдения, I-сила тока в проводнике, μ0 - магнитная постоянная.

Линии магнитной индукции- линии где касательные в любой точке совпадают с направлением вектора В.

Вариант №16