Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
330_Яковлев(2).doc
Скачиваний:
11
Добавлен:
08.05.2019
Размер:
5.81 Mб
Скачать

Случайные процессы

Случайный процесс – это последовательность случайных величин, упорядоченная по возрастанию некоторой переменной (чаще всего времени). Перейти от описания случайной величины к описанию случайного процесса можно, рассматривая совместные распределения двух, трех и более значений процесса в некоторые различные моменты времени. В частности, рассматривая процесс в временных сечениях (при ), получаем -мерные совместные функцию распределения и плотность распределения вероятностей случайных величин , определяемые выражением

.

Здесь и далее зависимость от времени явно не указана для упрощения записи. Для -мерной ПРВ выполняется условие нормировки

.

Случайный процесс считается полностью определенным, если для любого можно записать его совместную ПРВ при любом выборе моментов времени .

Часто при описании случайного процесса можно ограничиться совокупностью его смешанных начальных моментов (если они существуют, т.е. сходятся соответствующие интегралы)

и смешанных центральных моментов

при целых неотрицательных и целом .

В общем случае моменты совместной ПРВ зависят от расположения сечений на оси времени и называются моментными функциями. Чаще всего используют второй смешанный центральный момент

,

называемый функцией автокорреляции или автокорреляционной функцией (АКФ). Напомним, что здесь и далее явно не указана зависимость от времени, а именно – функциями времени являются , и .

Можно рассматривать совместно два случайных процесса и ; такое рассмотрение предполагает их описание в виде совместной многомерной ПРВ, а также в виде совокупности всех моментов, в том числе смешанных. Наиболее часто при этом используют второй смешанный центральный момент

,

называемый взаимно корреляционной функцией .

Среди всех случайных процессов выделяют СП, для которых совместная -мерная ПРВ не изменяется при одновременном изменении (сдвиге) всех временных сечений на одну и ту же величину. Такие процессы называются стационарными в узком смысле или строго стационарными.

Чаще рассматривают более широкий класс случайных процессов с ослабленным свойствам стационарности. СП называется стационарным в широком смысле, если при одновременном сдвиге сечений не изменяются лишь его моменты не выше второго порядка. Практически это означает, что СП стационарен в широком смысле, если он имеет постоянные среднее (математическое ожидание ) и дисперсию , а АКФ зависит только от разности моментов времени, но не от их положений на временнóй оси:

1) ,

2) , .

Заметим, что , откуда и следует постоянство дисперсии.

Нетрудно убедиться, что процесс, стационарный в узком смысле, стационарен и в широком смысле. Обратное утверждение вообще неверно, хотя существуют процессы, для которых стационарность в широком смысле влечет стационарность в узком смысле.

Совместная -мерная ПРВ отсчетов гауссовского процесса, взятых во временных сечениях , имеет вид

, (4.1)

где – определитель квадратной матрицы, составленной из попарных коэффициентов корреляции отсчетов; – алгебраическое дополнение элемента этой матрицы.

Совместная гауссовская ПРВ при любом полностью определяется математическими ожиданиями, дисперсиями и коэффициентами корреляции отсчетов, т. е. моментными функциями не выше второго порядка. Если гауссовский процесс стационарен в широком смысле, то все математические ожидания одинаковы, все дисперсии (а значит, и СКО) равны друг другу, а коэффициенты корреляции определяются только тем, насколько временные сечения отстоят друг от друга. Тогда, очевидно, ПРВ (4.1) не изменится, если все временные сечения сдвинуть влево или вправо на одну и ту же величину. Отсюда следует, что гауссовский процесс, стационарный в широком смысле, стационарен и в узком смысле (строго стационарен).

Среди строго стационарных случайных процессов часто выделяют более узкий класс эргодических случайных процессов. Для эргодических процессов моменты, найденные усреднением по ансамблю, равны соответствующим моментам, найденным усреднением по времени:

,

(здесь – символическое обозначение оператора усреднения по времени).

В частности, для эргодического процесса математическое ожидание, дисперсия и АКФ равны соответственно

,

,

Эргодичность весьма желательна, так как дает возможность практически измерять (оценивать) числовые характеристики случайного процесса. Дело в том, что обычно наблюдателю доступна лишь одна (хотя, возможно, достаточно длинная) реализация случайного процесса. Эргодичность означает, по существу, что эта единственная реализация является полноправным представителем всего ансамбля.

Измерение характеристик эргодического процесса может быть выполнено при помощи простых измерительных устройств; так, если процесс представляет собой напряжение, зависящее от времени, то вольтметр магнитоэлектрической системы измеряет его математическое ожидание (постоянную составляющую), вольтметр электромагнитной или термоэлектрической системы, подключенный через разделительную емкость (для исключения постоянной составляющей), – его среднеквадратическое значение (СКО). Устройство, структурная схема которого показана на рис. 4.1, позволяет измерить значения функции автокорреляции при различных . Фильтр нижних частот играет здесь роль интегратора, конденсатор выполняет центрирование процесса, так как не пропускает постоянную составляющую тока. Это устройство называется коррелометром.

Рис. 4.1

Достаточными условиями эргодичности стационарного случайного процесса служат условие , а также менее сильное условие Слуцкого .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]