Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Липпман.doc
Скачиваний:
8
Добавлен:
14.08.2019
Размер:
7.54 Mб
Скачать

9.4. Детали разрешения перегрузки функций

В разделе 9.2 мы уже упоминали, что процесс разрешения перегрузки функций состоит из трех шагов:

  1. Установить множество функций-кандидатов для разрешения данного вызова, а также свойства списка фактических аргументов.

  2. Отобрать из множества кандидатов устоявшие функции – те, которые могут быть вызваны с данным списком фактических аргументов при учете их числа и типов.

  3. Выбрать функцию, лучше всего соответствующую вызову, подвергнув ранжированию преобразования, которые необходимо применить к фактическим аргументам, чтобы привести их в соответствие с формальными параметрами устоявшей функции.

Теперь мы готовы к тому, чтобы изучить эти шаги более детально.

9.4.1. Функции-кандидаты

Функцией-кандидатом называется функция, имеющая то же имя, что и вызванная. Кандидаты отыскиваются двумя способами:

  • объявление функции видимо в точке вызова. В следующем примере

void f();

void f( int );

void f( double, double = 3.4 );

void f( char*, char* );

int main() {

f( 5.6 ); // для разрешения этого вызова есть четыре кандидата

return 0;


}

все четыре функции f() удовлетворяют этому условию. Поэтому множество кандидатов содержит четыре элемента;

  • если тип фактического аргумента объявлен внутри некоторого пространства имен, то функции-члены этого пространства, имеющие то же имя, что и вызванная функция, добавляются в множество кандидатов:

namespace NS {

class C { /* ... */ };

void takeC( C& );

}

// тип cobj - это класс C, объявленный в пространстве имен NS

NS::C obj;

int main() {

// в точке вызова не видна ни одна из функций takeC()

takeC( cobj); // правильно: вызывается NS::takeC( C& ),

// потому что аргумент имеет тип NS::C, следовательно,

// принимается во внимание функция takeC(),

// объявленная в пространстве имен NS

return 0;


}

Таким образом, совокупность кандидатов является объединением множества функций, видимых в точке вызова, и множества функций, объявленных в том же пространстве имен, к которому принадлежат типы фактических аргументов.

При идентификации множества перегруженных функций, видимых в точке вызова, применимы уже рассмотренные ранее правила.

Функция, объявленная во вложенной области видимости, скрывает, а не перегружает одноименную функцию во внешней области. В такой ситуации кандидатами будут только функции из во вложенной области, т.е. такие, которые не скрыты при вызове. В следующем примере функциями-кандидатами, видимыми в точке вызова, являются format(double) и format(char*):

char* format( int );

void g() {

char *format( double );

char* format( char* );

format(3); // вызывается format( double )


}

Так как format(int), объявленная в глобальной области видимости, скрыта, она не включается в множество функций-кандидатов.

Кандидаты могут быть введены с помощью using-объявлений, видимых в точке вызова:

namespace libs_R_us {

int max( int, int );

double max( double, double );

}

char max( char, char );

void func()

{

// функции из пространства имен невидимы

// все три вызова разрешаются в пользу глобальной функции max( char, char )

max( 87, 65 );

max( 35.5, 76.6 );

max( 'J', 'L' );


}

Функции max(), определенные в пространстве имен libs_R_us, невидимы в точке вызова. Единственной видимой является функция max() из глобальной области; только она входит в множество функций-кандидатов и вызывается при каждом из трех обращений к func(). Мы можем воспользоваться using-объявлением, чтобы сделать видимыми функции max() из пространства имен libs_R_us. Куда поместить using-объявление? Если включить его в глобальную область видимости:

char max( char, char );


using libs_R_us::max; // using-объявление

то функции max() из libs_R_us добавляются в множество перегруженных функций, которое уже содержит max(), объявленную в глобальной области. Теперь все три функции видны внутри func() и становятся кандидатами. В этой ситуации вызовы func() разрешаются следующим образом:

void func()

{

max( 87, 65 ); // вызывается libs_R_us::max( int, int )

max( 35.5, 76.6 ); // вызывается libs_R_us::max( double, double )

max( 'J', 'L' ); // вызывается ::max( char, char )


}

Но что будет, если мы введем using-объявление в локальную область видимости функции func(), как показано в данном примере?

void func()

{

// using-объявление

using libs_R_us::max;

// те же вызовы функций, что и выше


}

Какие из функций max() будут включены в множество кандидатов? Напомним, что using-объявления вкладываются друг в друга. При наличии такого объявления в локальной области глобальная функция max(char, char) оказывается скрытой, так что в точке вызова видны только

libs_R_us::max( int, int );


libs_R_us::max( double, double );

Они и являются кандидатами. Теперь вызовы func() разрешаются следующим образом:

void func()

{

// using-объявление

// глобальная функция max( char, char ) скрыта

using libs_R_us::max;

max( 87, 65 ); // вызывается libs_R_us::max( int, int )

max( 35.5, 76.6 ); // вызывается libs_R_us::max( double, double )

max( 'J', 'L' ); // вызывается libs_R_us::max( int, int )


}

Using-директивы также оказывают влияние на состав множества функций-кандидатов. Предположим, мы решили их использовать, чтобы сделать функции max() из пространства имен libs_R_us видимыми в func(). Если разместить следующую using-директиву в глобальной области видимости, то множество функций-кандидатов будет состоять из глобальной функции max(char, char) и функций max(int, int) и max(double, double), объявленных в libs_R_us:

namespace libs_R_us {

int max( int, int );

double max( double, double );

}

char max( char, char );

using namespace libs_R_us; // using-директива

void func()

{

max( 87, 65 ); // вызывается libs_R_us::max( int, int )

max( 35.5, 76.6 ); // вызывается libs_R_us::max( double, double )

max( 'J', 'L' ); // вызывается ::max( int, int )


}

Что будет, если поместить using-директиву в локальную область видимости, как в следующем примере?

void func()

{

// using-директива

using namespace libs_R_us;

// те же вызовы функций, что и выше


}

Какие из функций max() окажутся среди кандидатов? Напомним, что using-директива делает члены пространства имен видимыми, словно они были объявлены вне этого пространства, в той точке, где такая директива помещается. В нашем примере члены libs_R_us видимы в локальной области функции func(), как будто они объявлены вне пространства – в глобальной области. Отсюда следует, что множество перегруженных функций, видимых внутри func(), то же, что и раньше, т.е. включает в себя

max( char, char );

libs_R_us::max( int, int );


libs_R_us::max( double, double );

В локальной или глобальной области видимости появляется using-директива, на разрешение вызовов функции func() не влияет:

void func()

{

using namespace libs_R_us;

max( 87, 65 ); // вызывается libs_R_us::max( int, int )

max( 35.5, 76.6 ); // вызывается libs_R_us::max( double, double )

max( 'J', 'L' ); // вызывается ::max( int, int )


}

Итак, множество кандидатов состоит из функций, видимых в точке вызова, включая и те, которые введены using-объявлениями и using-директивами, а также из функций, объявленных в пространствах имен, ассоциированных с типами фактических аргументов. Например:

namespace basicLib {

int print( int );

double print( double );

}

namespace matrixLib {

class matrix { /* ... */ };

void print( const maxtrix & );

}

void display()

{

using basicLib::print;

matrixLib::matrix mObj;

print( mObj ); // вызывается maxtrixLib::print( const maxtrix & )

print( 87 ); // вызывается basicLib::print( const maxtrix & )


}

Кандидатами для print(mObj) являются введенные using-объявлением внутри display() функции basicLib::print(int) и basicLib::print(double), поскольку они видимы в точке вызова. Так как фактический аргумент функции имеет тип matrixLib::matrix, то функция print(), объявленная в пространстве имен matrixLib, также будет кандидатом. Каковы функции-кандидаты для print(87)? Только basicLib::print(int) и basicLib::print(double), видимые в точке вызова. Поскольку аргумент имеет тип int, дополнительное пространство имен в поисках других кандидатов не рассматривается.