Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Липпман.doc
Скачиваний:
8
Добавлен:
14.08.2019
Размер:
7.54 Mб
Скачать

14.3.1. Явный вызов деструктора

Иногда вызывать деструктор для некоторого объекта приходится явно. Особенно часто такая необходимость возникает в связи с оператором new (см. раздел 8.4). Рассмотрим пример. Когда мы пишем:

char *arena = new char[ sizeof Image ];

то из хипа выделяется память, размер которой равен размеру объекта типа Image, она не инициализирована и заполнена случайными битами. Если же написать:

Image *ptr = new (arena) Image( "Quasimodo" );

то никакой новой памяти не выделяется. Вместо этого переменной ptr присваивается адрес, ассоциированный с переменной arena. Теперь память, на которую указывает ptr, интерпретируется как занимаемая объектом класса Image, и конструктор применяется к уже существующей области. Таким образом, оператор размещения new() позволяет сконструировать объект в ранее выделенной области памяти.

Закончив работать с изображением Quasimodo, мы можем произвести какие-то операции с изображением Esmerelda, размещенным по тому же адресу arena в памяти:

Image *ptr = new (arena) Image( "Esmerelda" );

Однако изображение Quasimodo при этом будет затерто, а мы его модифицировали и хотели бы записать на диск. Обычно сохранение выполняется в деструкторе класса Image, но если мы применим оператор delete:

// плохо: не только вызывает деструктор, но и освобождает память


delete ptr;

то, помимо вызова деструктора, еще и возвратим в хип память, чего делать не следовало бы. Вместо этого можно явно вызвать деструктор класса Image:

ptr->~Image();

сохранив отведенную под изображение память для последующего вызова оператора размещения new.

Отметим, что, хотя ptr и arena адресуют одну и ту же область памяти в хипе, применение оператора delete к arena

// деструктор не вызывается


delete arena;

не приводит к вызову деструктора класса Image, так как arena имеет тип char*, а компилятор вызывает деструктор только тогда, когда операндом в delete является указатель на объект класса, имеющего деструктор.

14.3.2. Опасность увеличения размера программы

Встроенный деструктор может стать причиной непредвиденного увеличения размера программы, поскольку он вставляется в каждой точке выхода внутри функции для каждого активного локального объекта. Например, в следующем фрагменте

Account acct( "Tina Lee" );

int swt;

// ...

switch( swt ) {

case 0:

return;

case 1:

// что-то сделать

return;

case 2:

// сделать что-то другое

return;

// и так далее


}

компилятор подставит деструктор перед каждой инструкцией return. Деструктор класса Account невелик, и затраты времени и памяти на его подстановку тоже малы. В противном случае придется либо объявить деструктор невстроенным, либо реорганизовать программу. В примере выше инструкцию return в каждой метке case можно заменить инструкцией break с тем, чтобы у функции была единственная точка выхода:

// переписано для обеспечения единственной точки выхода

switch( swt ) {

case 0:

break;

case 1:

// что-то сделать

break;

case 2:

// сделать что-то другое

break;

// и так далее

}

// единственная точка выхода


return;

Упражнение 14.6

Напишите подходящий деструктор для приведенного набора членов класса, среди которых pstring адресует динамически выделенный массив символов:

class NoName {

public:

~NoName();

// ...

private:

char *pstring;

int ival;

double dval;


};

Упражнение 14.7

Необходим ли деструктор для класса, который вы выбрали в упражнении 14.3? Если нет, объясните почему. В противном случае предложите реализацию.

Упражнение 14.8

Сколько раз вызываются деструкторы в следующем фрагменте:

void mumble( const char *name, fouble balance, char acct_type )

{

Account acct;

if ( ! name )

return;

if ( balance <= 99 )

return;

switch( acct_type ) {

case 'z': return;

case 'a':

case 'b': return;

}

// ...


}