Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mental ray 3.3 для 3ds max.docx
Скачиваний:
5
Добавлен:
01.09.2019
Размер:
9.59 Mб
Скачать

Рассеянный задней поверхностью свет освещает переднюю поверхность

При изменении положения камеры карты нужно пересчитывать, это необходимо учитывать при анимации. Следует также избегать линз и зеркальных объектов, которые могут показать проекцию стороны объекта, отличающуюся от проекции камеры на большой угол — в этом случае в рендере будут наблюдаться артефакты. Например, для куба с SSS-материалом, если плоскость камеры выровнена строго параллельно вдоль одной из его граней, на перпендикулярной грани будут артефакты, поскольку ее проекция в пространстве камеры будет ребром куба. Увидеть артефакты можно, поместив отражающую поверхность возле этой грани.

Создание и запись данных в карты осуществляется шейдером misss_lightmap_write. Данные карты могут либо резидентно храниться в оперативной памяти, либо записываться в файл.

В соответствии с физической моделью подповерхностного рассеяния, которую мы рассмотрели в предыдущем обзоре, луч света, падающий в некоторую точку поверхности, освещает не только точку падения, но и некоторую площадку поверхности с центром в точке падения луча. Размер площадки и ее свойства подповерхностного отражения зависят от коэффициентов рассеяния и поглощения материала, а затухание интенсивности освещения происходит по экспоненциальному закону от центра к краям площадки и также зависит от характеристик рассеивающего материала.

Этот факт можно довольно просто использовать. Вместо того чтобы задавать характеристики материала и честно рассчитывать радиус рассеяния и величину затухания, будем просто "руками" задавать радиус затухания при помощи величины радиуса рассеяния и сравнивать получаемый рендер с тем, что необходимо получить.

Данные о диффузной освещенности точек поверхности карты Lightmap рассчитываются по закону Ламберта. По умолчанию, этот расчет выполняется шейдером misss_lambert_gamma. Размер карты, то есть общее количество точек с посчитанной освещенностью, можно задавать в настройках. Когда луч от камеры достигает некоторой точки поверхности, ее освещенность от подповерхностного рассеяния рассчитывается сбором освещенностей соседних точек из lightmap с учетом затухания, определяемого заданным радиусом подповерхностного рассеяния. Количество просматриваемых соседних точек также можно изменять в настройках.

Таким образом, расчет подповерхностного рассеяния при помощи lightmap и depthmap опирается на физическую модель рассеяния света, но позволяет настраивать расчет по "визуальному" принципу, без необходимости использовать реальные физические характеристики рассеивающего материала.

Именно поэтому группа шейдеров SSS Fast считается "физически некорректной" — для них мы задаем в качестве параметра то, что miss_physical "честно" рассчитывает как результат рассеяния света в объеме материала.

SSS Fast не требует для расчетов испускания фотонов, GI, замкнутости объема и даже рейтресинга.

Рассмотрим смысл и назначение настроечных параметров шейдеров и материалов.

Материал miss_fast_simple_phen

Начнем с miss_fast_simple_phen (SSS Fast Material), как одного из базовых материалов.

Этот материал является составным, то есть, построен из нескольких базовых модульных шейдеров — misss_fast_shader, misss_skin_specular, misss_lambert_gamma и bump. Он автоматически генерирует lightmap и depthmap, наполняет их данными и рассчитывает окончательный цвет с учетом упрощенной модели подповерхностного рассеяния. Содержит два рассеивающих слоя, соответствующих передней и задней поверхности объекта, слой с простыми свойствами зеркального отражения и слой не рассеянного диффузного отражения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]