Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ (для диктовки)!!!.docx
Скачиваний:
12
Добавлен:
08.09.2019
Размер:
441.18 Кб
Скачать

2. Масштабы фотосинтетической деятельности в биосфере.

Фотосинтез — единственный процесс на Зем­ле, идущий в грандиозных масштабах и связанный с превраще­нием энергии солнечного света в энергию химических свя­зей. Эта космическая энергия, запасенная зелеными растениями, составляет основу для жизнедеятельности всех других гетеро­трофных организмов на Земле от бактерий до человека.

Выделяя кислород в процессе фотосинтеза, зеленое растение нако­пило кислород в земной атмосфере, без которого мы не можем жить. Некоторое представление о масштабах синтетической деятельно­сти зеленых растений могут дать следующие цифры. По приблизительным подсчетам, растения выделяют ежегодно около 400 млрд. т свободного кислорода в атмосферу, поглощают около 600 млрд. т СО2 и синтезируют около 450 млрд. т органического ве­щества. Такова космическая роль зеленого растения.

Накопление органической массы. В процес­се фотосинтеза наземные растения образуют 100—172 млрд. т, а растения морей и океанов - 60 - 70 млрд. т биомассы в год (в пересчете на сухое вещество). Общая масса растений на Земле в настоящее время составляет 2402,7 млрд. т, причем 90 % этой сухой массы приходится на целлюлозу. На долю на­земных растений приходится 2402,5 млрд. т, а на растения гидросферы - всего 0,2 млрд. т (из-за недостатка света). Общая масса животных и микроорганизмов на Земле — 23 млрд. т, что составляет около 1 % от растительной биомассы. Из этого количества 20 млрд. т приходится на обитателей суши, а 3 млрд. т - на животных и микроорганизмы гидросферы.

За время существования жизни на Земле органические ос­татки растений и животных накапливались и модифицирова­лись. На суше эти органические вещества представлены в виде подстилки, гумуса и торфа, из которых при определенных условиях в толще литосферы формировался уголь. В морях и океанах органические остатки (главным образом животного происхождения) оседали на дно и входили в состав осадоч­ных пород. При опускании в более глубокие области литосферы из этих остатков под действием микроорганизмов, повы­шенных температур и давления образовывались газ и нефть.) Масса органических веществ подстилки, торфа и гумуса оцени­вается в 194, 220 и 2500 млрд. т соответственно. Нефть и газ составляют 10000-12 000 млрд. т. Содержание органи­ческих веществ в осадочных породах достигает 20 000 000 млрд. т (по углероду).

Особенно интенсивное накопление мертвых органических остатков происходило 300 млн. лет назад в палеозойскую эру. Запасы древесины, а в последние 200 лет угля, нефти и газа используются человеком для получения энергии, необходи­мой в быту, промышленности и сельском хозяйстве.

3.Строение листа как органа фотосинтеза. Оптические свойства листа.

Органом фотосинтеза у высших растений является лист. Кроме фотосинтеза в жизни растений лист выполняет функции газообмена, транспирации, синтеза ряда органических веществ, в том числе и фитогормонов.

Структура листа, сложившаяся в процессе эволюции, оптимально приспособлена для выполнения его важнейших функций.

Листья, будучи боковыми органами, как правило, имеют более или менее плоскую форму, что способствует созданию максимальной фотосинтезирующей поверхности. Боковое расположение на побеге и плоская форма листа обусловливают различия в морфоанатомической структуре его сторон (по цвету, характеру жилок, опушенности и т. д.).

Микроскопическая структура листа определяется его важнейшей функцией — фотосинтезом. Поэтому основной тканью листа является паренхимный комплекс клеток, несущий хлоропласты — мезофилл (греч. mesos — средний и филл). Остальные ткани листа обеспечивают работу мезофилла и поддерживают связь с окружающей средой. Покровная ткань (эпидермис) регулирует газообмен и транспирацию, защищает лист от внешних воздействий. Проводящие ткани осуществляют отток и приток веществ, поддерживают нормальное оводнение фотосинтезирующих клеток. Механические ткани совместно с живыми тургесцентными клетками мезофилла и эпидермиса образуют опорную систему листа.

Эпидермис. Покрывает лист с обеих сторон и защищает его от высыхания, механических воздействий, от проникновения микроорганизмов. Защитную функцию эпидермиса заметно усиливает кутикулярный слой, иногда его поверхность сплошь покрыта воском. У большинства листьев эпидермис однослойный, в редких случаях покровы листа могут быть многослойными, например у фикуса.Верхний и нижний эпидермисы типичного листа несколько различны. В нижнем эпидермисе больше устьиц, в верхнем их меньше или нет совсем. Кутикула, восковой налет лучше развиваются на верхней стороне листа, которая больше освещается и сильнее нагревается.В клетках эпидермиса хлоропласты обычно отсутствуют. Исключение составляют некоторые суккуленты, эфемеры с тонкой листовой пластинкой, где мезофилл немногослоен.

Мезофилл. Представлен клетками основной паренхимы, расположенными между верхним и нижним эпидермисом (исключая механические ткани и проводящие пучки). Состоит из живых клеток, с тонкими оболочками, округлой или слегка вытянутой формы, реже с небольшими выростами. Благодаря многочисленным хлоропластам мезофилл окрашен в зеленый цвет, так называемая хлоренхима листа. У типичных дорсовентральных листьев мезофилл неоднороден и дифференцирован на столбчатую (палисадную) и губчатую паренхиму.

Губчатую паренхиму составляют относительно округлые клетки с большими межклетниками, которые занимают больший объем, чем сами клетки. Рыхлая структура мезофилла обусловливает большую общую площадь поверхности клеток, обращенной к межклетникам. Через крупные межклетники губчатого мезофилла идет газообмен. Углекислый газ атмосферы через устьица нижнего эпидермиса попадает в межклетники губчатого мезофилла и разносится по всем тканям листа. Кислород, образующийся в хлоренхиме при фотосинтезе, выделяется в межклетники, а через устьица — в атмосферу. Газообмен осуществляется и между клетками столбчатой хлоренхимы, имеющими очень небольшие межклетники.

На сильном свету хлоропласты занимают в клетке пристенное положение и становятся ребром к направлению лучей, в результате чего большая часть светового потока проходит мимо хлоропластов или скользит по их поверхности, не разрушая хлорофилл. При слабом освещении, наоборот, хлоропласты распределяются в клетке диффузно или скапливаются в нижней ее части, что способствует лучшему освещению каждого из них. В округлых клетках, характерных для губчатой паренхимы, такое регулирование расположения хлоропластов при разной освещенности (особенно на сильном свету) практически невозможно.

Проводящие ткани жилок не соприкасаются непосредственно с межклетниками мезофилла. Крупные жилки окружены паренхимой, содержащей мало хлоропластов, а мелкие — одним или более слоями плотно сомкнутых клеток, образующих обкладку проводящего пучка (пучковое влагалище). У многих листьев обкладки проводящих пучков связаны с верхним и (или) нижним эпидермисом клетками, напоминающими клетки самой обкладки. Такие ответвления от нее называют продолжениями обкладки.

Световые и теневые листья. Факторы окружающей среды, главным образом свет, действуя на развивающиеся листья, могут оказать значительное влияние на их размеры и толщину. У многих видов листья, выросшие при высокой освещенности — световые листья, мельче и толще теневых, сформировавшихся при меньшем количестве света. Увеличение толщины световых листьев связано главным образом с усиленным развитием столбчатой паренхимы. Проводящая система в них также более протяженная, стенки клеток эпидермиса толще. В результате, несмотря на то что у обоих типов листьев интенсивность фотосинтеза при низкой освещенности одинакова, теневые листья не приспособлены к яркому свету и фотосинтезируют в таких условиях гораздо слабее световых.

Оптические свойства листа

Лист высшего растения представляет собой сложную оптическую систему. Не имея возможностей к передвижению, высшие растения вынуждены приспосабливаться к различным и быстро меняющимся условиям среды, и в том числе к солнечной радиации. При высокой освещенности некоторые растения способны изменять угол наклона листьев, снижать количество света, достигающего хлоренхимы, накапливать определенные фотозащитные вещества.

В зависимости от окружающих условий изменяются геометрические размеры клеток, морфология ассимиляционных тканей, содержание и соотношение основных пигментов фотосинтеза (хлорофиллов и каротиноидов), различным образом организуются фотосинтетические мембраны (хлоропласты теневого и светового типа).

В растворах как хлорофиллы, так и каротиноиды обладают интенсивными, узкими и достаточно далеко отстоящими друг от друга полосами поглощения света. Хлорофиллы эффективно поглощают синий, красный и очень слабо – зеленый свет. Спектры пигментов существенно уширяются и в значительно большей степени перекрываются в хлоропластах. Это связано с тем, что в отличие от растворов в хлоропластных мембранах пигменты ассоциированы с белками, липидами и взаимодействуют друг с другом. В результате этого достигается передача (миграция) энергии от светосборщиков на реакционные центры. Еще более сглажены и сложны спектры поглощения листьев.

Часть света, падающего на лист, отражается от него. Различают зеркальное (на гладких, блестящих поверхностях) и диффузное отражения.

Лучи разного цвета (длины волны) поглощаются неодинаково. Зеленые листья обладают очень высоким поглощением (низким отражением и пропусканием) в фиолетовой, синей, голубой и красной частях спектра. В этих областях поглощение мало зависит от концентрации хлорофиллов, что объяснятся тем, что в сильно рассеивающей среде и при высокой концентрации пигментов свет практически полностью поглощается уже уьповерхности листа.

Значительно большая часть излучения отражается и проходит через лист в области 520–580 нм, именно поэтому лист выглядит зеленым. Таким образом, зеленый свет, несмотря на низкие коэффициенты удельного поглощения хлорофилла в этой спектральной области, эффективно поглощается и достаточно равномерно заполняет ткань листа. Это имеет большое значение для фотосинтеза теневых, расположенных внутри кроны листьев, поскольку свет, отраженный или прошедший через расположенные выше листья, обогащен зелеными лучами.

Изменения в онтогенезе и приспособление к условиям среды.

Обращенные к свету (в сравнении с темновыми) листья характеризуются меньшей площадью, большей толщиной, длинными палисадными клетками и имеют большее число устьиц. Хлоропласты таких листьев содержат меньшие количества хлорофилла, но более эффективно осуществляют фотосинтез. Для поверхностей листьев некоторых растений, произрастающих в условиях сильной солнечной радиации, характерно высокое зеркальное отражение.

Листья других растений имеют обильную опушенность, что также снижает интенсивность света, достигающего мезофилла.

Защита от действия оптического излучения возможна в результате индукции синтеза дополнительных пигментов, обладающих фотозащитным действием. Примером этому являются антоцианы, содержание которых велико в молодых (ювенильных) и стареющих листьях и которые часто образуются в растениях в ответ на действие высокой интенсивности видимого света, ультрафиолетовой радиации, высоких и низких температур и других стрессорных воздействий. Интересно, что эти красные пигменты обычно локализованы в клетках верхнего эпидермиса и обеспечивают эффективное экранирование в зеленой области, в которой листья в значительной степени прозрачны для света.

Действие ультрафиолетовой радиации индуцирует синтез некоторых фенольных соединений, которые накапливаются в кутикуле и эпидермальных клетках, обеспечивая поглощение вредного для растений ультрафиолетового света.

Старение листьев, которое происходит у однолетних растений (монокарпиков) в период созревания семян, у листопадных деревьев осенью, а у тропических видов перед наступлением засушливого периода, сопровождается переносом ценных биологических веществ (сахаров, аминокислот) из ассимиляционных тканей в генеративные или запасающие органы. В желтых осенних листьях клена, в которых почти полностью разрушается хлорофилл, сохраняются каротиноиды. Даже в низких концентрациях они обеспечивают сильное поглощение в синей и голубой областях и, являясь фотохимически малоактивными соединениями, препятствуют фотодеструктивным процессам. Кроме того, в ходе осеннего старения в листьях часто накапливаются антоцианы, которые, осуществляют защиту от излучения в зеленой, оранжевой и ультрафиолетовой областях спектра.