Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ALL.doc
Скачиваний:
67
Добавлен:
11.09.2019
Размер:
24.93 Mб
Скачать

§ 13.2. Излучатели ультразвуковых колебаний

В ультразвуковых электрических датчиках наибольшее распространение получили магнитострикционные и пьезоэлектриче­ские излучатели, возбуждаемые с помощью полупроводниковых и электронных генераторов, вырабатывающих переменное напряже­ние с частотой более 10 кГц. Часто применяется и импульсное воз­буждение ультразвуковых излучателей.

Магнитострикционный излучатель стержневого типа (рис. 13.2, а) представляет собой набор тонких листов из ферромагнитного материала, на который намотана обмотка возбуждения. Чаще все­го в магнитострикдионных излучателях используется никель й его

сплавы (инвар и монель), а также ферриты. Форма пластины по­казана на рис. 13.2, б.

Если стержень из ферромагнитного материала находится в пе­ременном магнитном поле, то он будет попеременно сжиматься и разжиматься, т. е. деформироваться. Зависимость относительного изменения длины стержня из никеля от напряженности маг­нитного поля Н показана на рис. 13.3. Так как знак деформации не зависит от направления поля, то частота колебаний деформа­ции будет в два раза больше частоты переменного возбуждающе-

го поля. Для получения больших механических деформаций ис­пользуют постоянное подмагничивание стержня, чтобы работать на наиболее крутом участке кривой (рис. 13.3).

Магнитострикционные излучатели работают в условиях резо­нанса, когда частота возбуждающего поля совпадает (настроена в резонанс) с частотой собственных упругих колебаний стержня, которая определяется по формуле

где / — длина стержня; Е — модуль упругости; р — плотность ма­териала.

Для никелевого стержня длиной /=100 мм частота собствен­ных колебаний составляет 24,3 кГц, амплитуда достигает пример­но 1 мкм. Наивысшая частота, на которой еще удается возбудить достаточно интенсивные колебания, составляет 60 кГц, что соот­ветствует длине 40 мм. Помимо основной частоты в стержне мож­но возбудить и колебания на высших гармониках (при соответ­ствующем креплении стержня), но с меньшей амплитудой.

В пьезоэлектрическом излучателе ультразвуковых колебаний используется пластина кварца (рис. 13.4), к которой приложено переменное напряжение Uх, создающее электрическое поле в на­правлении электрической оси X (см. рис. 7.1). Продольный обрат­ный пьезоэффект заключается в деформации пластины по оси X.

При этом относительное изменение толщины пластины

(13.3)

Поперечный обратный пьезоэффект заключается в деформации пла­стины в направлении механической оси У. При этом относительное изменение длины пластины

(13.4)

Как видно из (13.3), продольная деформация не зависит от раз метров пластины, а поперечная де­формация, как следует из (13.4), увеличивается с ростом отношения l/а. При напряжениях до 2,5 кВ сохраняется прямая пропорциональ­ность между величиной деформа­ции и напряжением. При больших напряжениях деформация увеличи­вается не столь быстро и при 1)х= =25 кВ оказывается на 30% мень­шей, чем рассчитанная по (13.3) и (13.4). Амплитуда колебаний до­стигает максимума при равенстве частоты приложенного напряжения и частоты собственных колебаний пластины.

Частота собственных продольных колебаний определяется по формуле, аналогичной (13.4), где модуль упругости берется в на­правлении оси X:

Частота собственных поперечных колебаний зависит от модуля упругости в направлении оси У:

Для кварцевых пластин f0=285/c [кГц] и f/=272,6// [кГц], где раз­меры пластины выражены в сантиметрах.

По сравнению с магнитострикционными пьезоэлектрические из­лучатели обеспечивают значительно большую (на 1—2 порядка) частоту ультразвуковых колебаний.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]