Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ALL.doc
Скачиваний:
67
Добавлен:
11.09.2019
Размер:
24.93 Mб
Скачать

§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления

И спользование датчиков Холла для целей автоматиче­ского измерения будет рациональным в том случае, если они име­ют достаточно высокую чувствительность и мало подвержены влия­нию температуры. Чувствительность датчика зависит от выходной ЭДС, т. е. от постоянной Холла, которая, в свою очередь, опреде­ляется подвижностью носителей тока. В проводящих телах носи­телями тока являются электроны. При обычных температурах электроны находятся в хаотическом тепло­вом движении с самыми различными скоростями. Однако если вдоль тела соз­дать электрическое поле Е, приложив напряжение U, то все электроны начнут передвигаться в направлении поля с некоторой средней скоростью v (при этом отдельные электроны могут иметь как большую, так и меньшую скорости). Подвижность носителей тока (р) опре­деляется как отношение скорости v к на­пряженности электрического поля Е:

(14.3)

Подвижность зависит от того, как часто электрон при своем движении сталкива­ется с решеткой твердого тела. Следует особо отметить, что большое значение ЭДС Холла еще не означает, что в этом веществе велик эффект Холла и оно годится для технических при­менений. Большое значение ЭДС может быть полученj за сче* большого напряжения U, т. е. больших затрат электрической энергии. В то же время в другом материале такая же ЭДС Холла и те же скорости носителей тока могут быть получены при мень­шем напряжении только за счет большей подвижности. Такой ма­териал выгоднее для применения в датчике Холла.

Короче говоря, основным требованием, предъявляемым к мате­риалам для датчиков, является сочетание большой подвижности носителей тока с минимальными температурными зависимостями.

В зависимости от технологии изготовления различают кристал­лические (в форме пластинки) и пленочные датчики.

В качестве материала кристаллических датчиков используются различные соединения индия: мышьяковистый индий IriAs, фосфид индия 1nР, сурьмянистый индий InSb, а также германий Ge и крем­ний Si.

Наибольшее значение постоянной Холла у материала InSb, но оно сильно зависит от температуры. На рис. 14.2 показаны зависимости постоянной Холла от температуры для разных материалов (1 — InSb, 2 — InAs, 3 —твердый раствор InAs и 1пР). Для гер­мания постоянная Холла в десятки раз меньше, но он обладает значительно большим удельным сопротивлением. Из германия можно делать датчики с сопротивлением в несколько килоом. Еще ббльшим удельным сопротивлением обладает кремний, но его труд­нее очистить от примесей. Высокую степень очистки полупроводни­ковых материалов получают при плавке в космических лаборато­риях.

Для размещения в узких зазорах очень удобны пленочные дат­чики Холла. Для их изготовления используется метод испарения в вакууме исходного вещества с последующим осаждением на под­ложку из слюды. Толщина пленочных датчиков составляет 10— 30 мкм, что в сотни раз меньше, чем у кристаллических датчиков. Материалом для пленочных датчиков служат соединения ртути: селенид ртути HgSe и теллурид ртути HgTe. Чем тоньше пленка, тем меньше постоянная Холла. По своим возможностям примене­ния в системах автоматики пленочные датчики примерно равно­ценны с германиевыми и даже лучше по температурной стабильно­сти. Но они очень дорогие. В настоящее время проводятся иссле­дования новых материалов, пригодных для использования в датчиках Холла и магнитосопротивления.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]