Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ МГИМО.doc
Скачиваний:
17
Добавлен:
07.11.2019
Размер:
5.12 Mб
Скачать

Образование тяжелых частиц (космологический нуклеосинтез)

  1. Миллион лет спустя Вселенная остывает настолько, что электроны и ядра рекомбинируют, образуя нейтральные атомы водорода, которые составляют 90% всех атомов, гелия -10%. Фотоны (кванты электромагнитного излучения - света) перестают взаимодействовать с веществом и остаются в виде фона - так называемого реликтового излучения.

Вся информация о процессах, протекавших во Вселенной, осталась "записанной" в особом типе космического излучения - так называемого реликтового излучения. Реликтовое излучение было экспериментально обнаружено в 1965 г. американскими радиоастрономами А.Пензиасом и Р.Вилсоном. Поэтому мы сегодня говорим, что первые мгновения жизни Вселенной мы не просто моделируем, а считаем доказанным именно такой вариант развития.

Звезды, Галактики и другие структуры Вселенной.

Как развивалась Вселенная дальше? "Распад" Вселенной (возвращение к "первоначальному равновесному" состоянию) или усложнение структуры Вселенной? Но по какому пути пошло дальнейшее развитие Вселенной? Можно говорить о прохождении Вселенной точки бифуркации : был возможен либо “распад” Вселенной (и возвращение к “первоначальному равновесному” состоянию типа «кваркового супа»), либо дальнейшее усложнении структуры Вселенной. Наши сегодняшние представления о Вселенной свидетельствуют о переходе к более сложным и разномасштабным структурам, находящимся в сугубо неравновесных состояниях. В такой диссипативной системе возможны процессы самоорганизации. Во Вселенной произошел скачок, и возникли разномасштабные структуры. Скачкообразный переход в новое состояние с разными подсистемами - от звезд и планет до сверхскопления Галактик. Однородная и изотропная модель Вселенной - это первое приближение, справедливое лишь в достаточно больших масштабах, превышающих 300-500 млн. световых лет. В меньших масштабах вещество распределено очень неоднородно: звезды собраны в галактики, галактики - в скопления.

Ячеистая структура Вселенной.

Размер этих ячеек около 100-200 млн. световых лет. Сжатые облака, находящиеся на стенках ячеек - это место, где в дальнейшем образуются галактики.

Образование звезд.

Вселенная представляла газовое облако. Под действием гравитации - части облака сжимаются и одновременно разогреваются. При достижении высокой температуры в центре сжатия начинают протекать термоядерные реакции с участием водорода - родилась звезда. Водород - в гелий, и в желтых карликах типа нашего Солнца больше ничего не происходит. В массивных звездах (красные гиганты) водород быстро сгорает, звезда сжимается и разогревается до температур несколько сотен миллионов градусов. Сложные термоядерные реакции - например, три ядра гелия объединяются и образуют возбужденное ядро углерода. Затем углерод с гелием образуют кислород и так далее вплоть до образования атомов железа. Дальнейшая судьба звезды обусловлена тем, что ее железное ядро сжимается (коллапсирует) до размеров 10—20 км, при этом в зависимости от первоначальной массы звезда превращаясь в нейтронную звезду или черную дыру. В то время как ядро звезды все больше разогревается, ее внешняя оболочка, состоящая из водорода, расширяется и охлаждается. Силы тяготения могут так сжать ядро, что оно взорвется, внешние области звезды резко разогреваются, и мы видим вспышку Сверхновой. При этом в пространство со скоростью около 10 тыс.км/с выбрасывается огромное количество синтезированных химических элементов, и теперь во Вселенной существуют газопылевые облака. Более тяжелые элементы требуют участия в реакциях заряженных частиц и нейтронов, а самые тяжелые элементы образуются при взрыве звезды - вспышка Сверхновой. Во Вселенной существуют газопылевые облака, из которых возможно образование звезд следующих поколений.

Видео - образование звезд.

Астрономические приборы

Оптический телескоп

Радиотелескоп

Галактики

Галактики - это стационарные звездные системы, удерживаемые за счет гравитационного взаимодействия. В нашей Галактике (Млечный путь) примерно 1011 звезд. Галактики, как и звезды, образуют группы и скопления. Средняя плотность видимого вещества оказывается одинаковой: (3х10-31 г/см3).

Галактика M51-99

Спиральная галактика

Галактика M1

Галактика N253-95

Объекты Вселенной

Нейтронные звезды

Нейтронные звезды (состоящие, в основном, из нейтронов) - очень компактные космические объекты размером около 10 км, с огромным магнитным полем (1013 гаусс). Нейтронные звезды обнаружены в виде пульсаров (пульсирующие источники радио- и рентгеновского излучений), а также барстеров (вспышечные источники рентгеновского излучения).

Черная дыра

В черной дыре большая масса вещества заключена в малом объеме (например, чтобы Солнце стало черной дырой, его диаметр должен уменьшится до 6 км). По современным представлениям, массивные звезды, заканчивая свою эволюцию, могут сколлапсировать в черную дыру. Помимо черных дыр, ученые обсуждают возможность существования «кротовых нор» — областей сильно искривленного пространства, но в отличие от черной дыры ее поле не настолько сильное, чтобы оттуда нельзя было выйти. Такие «норы» могут соединять отдаленные области пространства и находиться вне нашего пространства, в неком суперпространстве. Есть предположения, что эти «норы» могут соединять нас с другими вселенными. Правда, далеко не все специалисты считают, что такие объекты реально существуют, но физические законы не запрещают их наличие.

Квазары - квазизвезды - ядра галактик и представляют собой сверхмассивные черные дыры.