Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Производство заготовок. Литье. Серия учебных пособий. Книга 3. Проектирование и производство отливок (литых заготовок)

.pdf
Скачиваний:
162
Добавлен:
20.05.2014
Размер:
3.13 Mб
Скачать

1.3.1.3 Дефекты решетки

Реальные кристаллы отличаются от идеальных наличием в них дефектов. Такие дефекты называются дислокацией и они бывают:

-нульмерные (точечные),

-одномерные линейные,

-двумерные поверхностные,

-трехмерные объемные.

Причиной дислокаций являются искажения кристаллической решетки, проявляющиеся в виде лишнего атома - дислокация внедрения (рисунок 7 б), или его недостатка - дислокация вакансии (рисунок 7 в), либо наличие в решетке другого (примесного) атома - дислокация замещения.

а)

б)

в)

а) – без дефектов; б) – дислокация «внедрения» и в) – «вакансии»

Рисунок 7 – Модель кристаллической решетки и виды дислокаций

У линейных дефектов их длина значительно больше толщины, у поверхностных – длина и ширина больше толщины, а у объемных дислокаций значительны длина, ширина и толщина (сколы, трещины). Дислокации существенно сказываются на свойствах материала.

Характерным признаком кристалла является твердое состояние до температуры плавления, причем процесс плавления происходит при постоянной температуре.

В реальном металле кристаллическая решетка состоит из огромного количества ячеек.

1.3.2 Физические методы контроля качества металлов

Физические методы контроля качества металлов (дефектоскопия) осуществляются без их разрушений. В основе методов лежат проникающие излучения. Метод позволяет выявить внутренние дефекты (газовые и усадочные раковины, не провар, трещины и т.д.) в готовых изделиях (слитках, сварных соединениях) без их разрушения. Используют рентгеновские и гамма лучи. Последние направляют на изделие, за которым находится устройство для регистрации интенсивности излучения прошедшего через изделие (фотопленка, светящийся экран, ионизационная камера). При наличии дефектов поглощение лучей будет не одинаковым по сечению, по различию судят о размерах и характере дефекта.

Другой вид дефектоскопии – магнитный контроль, выявляет на поверхности стальных изделий трещины, волосовины, неметаллические включения. В местах дефекта намагниченного изделия оседает магнитная суспензия (частицы Fe3O4 в трансформаторном масле).

Люминисцентный метод выявляет поверхностные дефекты (трещины, поры, рыхлость). Метод основан на усилении видимости дефектов при облучении их ультразвуковыми лучами и используют эффект свечения некоторых жидкостей. Изделия погружают в жидкость, потом лишнюю жидкость удаляют, поверхность посыпают порошком (тальком), порошок извлекает жидкость из полости дефекта и при его облучении ультрафиолетовыми лучами наблюдают свечение в темной комнате.

Ультразвуковой метод контроля основан на способности УЗК отражаться от поверхности внутренних дефектов, бывает: тепловой и эхо метод. Тепловой метод основан на ослабление интенсивности прошедших ультразвуковых колебаний. Его применяют для изделий простой формы (листы, трубы, подшипники скольжения).

Электроиндукционный метод контроля применяют для выявления поверхностных дефектов. Он основан на замере изменений возбуждаемых в металле вихревых токов под влиянием неоднородности металла.

1.3.2.1 Методы механических испытаний

Все детали в процессе эксплуатации подвергаются воздействию внешних сил в той или иной мере. Нагрузки, действующие на деталь во время работы, весьма разнообразны, и они могут растягивать деталь или сжимать ее, изгибать или создавать кручение. При этом воздействия могут осуществляться плавно, постепенно (статически) или мгновенно (динамически). Поэтому важным свойством материалов является прочность при данном виде нагружения. Она характеризуется максимальной нагрузкой, которую выдерживает материал не разрушаясь. Воздействуя на деталь, внешние нагрузки изменяют ее форму, то есть - деформируют.

Если к детали приложены сравнительно небольшие силы, под действием которых атомы в кристаллической решетке смещаются на расстояния меньше межатомных, то после прекращения действия внешней силы деталь принимает свою первоначальную форму, то есть атомы возвращаются в устойчивое положение, и деформация исчезает. Свойство материалов принимать первоначальную форму после прекращения действия внешних сил называется упругостью, а деформация, исчезающая после снятия нагрузки, получила название упругой.

Если к заготовке приложены большие усилия, под действием которых атомы в кристаллической решетке сместятся на расстояния больше межатомных, тогда они занимают новое устойчивое положение, соответствующее положению атомов соседнего ряда. После прекращения действия приложенной силы деформация не исчезает, и заготовка остается деформированной. Такая деформация называется пластической.

Способность материала деформироваться, под действием внешних нагрузок не разрушаясь, и сохранять измененную форму после прекращения действия усилий называется пластичностью. Таким образом, пластичность - это возможность металла изменять форму или деформироваться без нарушения целостности при обработке давлением.

Оценка качества металла при исследовании его пластичности производится визуально по состоянию поверхности. При этом проводят испытания на изгиб, испытания на перегиб лент, листов и полос толщиной до 4 мм, испытания на расплющивание, причем некоторые технологические пробы, используемые для исследования металлов, стандартизированы.

Материалы, не способные к пластическим деформациям, называются хрупкими. Такие материалы при значительной нагрузке или под действием ударных нагрузок разрушаются внезапно.

Для того, чтобы узнать, удовлетворяет ли деталь предъявляемым к ней требованиям, производят специальные испытания. Вид испытания и характер его проведения указывают в технических условиях или на чертеже детали. Наибольшее распространение получили следующие виды механических испытаний: на растяжение, на ударный изгиб и ударную вязкость, на выносливость, на твердость, на жаропрочность.

Механические свойства характеризуют способность материала сопротивляться деформации и разрушению при воздействии внешних сил. Они зависят от рода материала, его обработки, внутреннего строения, формы изделия и ряда других факторов. Их определяют путем испытания образцов.

Испытания бывают: динамические, статические, циклические. Статические испытания – это испытания на растяжение, характеризуют

упругость и пластичность и определяют пределы пропорциональности. Испытания текучести и прочности, и испытание на твердость

(способность материала сопротивляться вдавливанию в него другого более твердого тела) просты. Быстро проводятся и не разрушают изделия, поэтому широко используются.

Твердость по Бринелю определяют вдавливанием шарика. Ее обозначают НВ, значение твердости определяют расчетом по диаметру лунки оставленной шариком и приложенной нагрузки. Они также приведены в таблицах.

Твердость по Роквелу – вдавливают алмазный конус с вершиной 1200 или малый ( 1.59 мм) шарик, твердость определяют по глубине внедрения. Его проводят в два приема, сначала на малой нагрузке (10 кг), а затем основная нагрузка (90 кг для шарика, 60 и 140 кг для конуса). Обозначают HR с добавлением индекса шкалы (С, В, А). Для перевода твердости по Роквелу в твердость по Бринелю пользуются специальными графиками или таблицами.

Твердость по Виккерсу – твердость тонких поверхностных слоев, вдавливают четырехгранную алмазную пирамиду с углом 1360 малыми нагрузками (5, 10, 20, 30, 50, 100 и 120 кг), затем с микроскопом определяют площадь отпечатка по длине диагонали. Обозначают HV, единицы измерения совпадает с НВ и являются МПа.

Микротвердость – вдавливают алмазную пирамиду под нагрузкой от 1 до 200 гр. Используют для определения твердости тонких покрытий.

Испытание на ползучесть также относится к статическим испытаниям. Ползучесть – способность металла изменять, хотя и медленно, форму и размеры под действием сравнительно небольшой нагрузки и температуры. Испытания проводят в печи, нагружая образцы, и строят график «удлинениевремя». По полученным данным определяют предел ползучести.

Испытания на ударную вязкость – наиболее применяемое испытание из всех динамических, позволяет определить степень сопротивления материала разрушению при ударной нагрузке. Испытания проводят на специальной установке. Образец сечением 10 х 10 мм надрезают с одной стороны на 2 мм, устанавливают на опоры поднимают маятник на определенную высоту и дают свободно падать. После разрушения образца маятник поднимается на определенный угол, по которому определяют (из таблиц) ударную вязкость ak .

Испытания на усталость. Усталостным разрушением называют явление разрушения металлов под действием повторных или знакопеременных напряжений, причем усталостное разрушение может наступить при значении напряжения меньше предела прочности и даже текучести. Сопротивление усталости называют выносливостью. Усталость наступает при превышении предела выносливости.

1.3.2.2 Технологические испытания

Основные машиностроительные материалы - металлы и сплавы. Они обладают многими свойствами, обусловленными, в основном, их внутренним строением. Изменяя строение металлов и сплавов можно изменять их свойства в необходимом направлении, то есть расчетливо управлять свойствами. Мягкий и пластичный металл или сплав можно делать твердым, хрупким и наоборот. Конструкционные материалы удобно рассматривать по группам с близкими свойствами и применением. Из них важнейшими являются сплавы железа. К какой группе должен относиться материал изделия, конструктор определяет до начала конструирования, как правило, без специальных расчетов, на основании представлений о размерах, форме, рабочих температурах, действующих нагрузках, способе изготовления и общей стоимости конструкции. Лишь после выбора группы материала возможно конструирование, уточнение способа изготовления и окончательный выбор марки материала.

1.4 Литейные сплавы и их применение

Литейные сплавы получают сплавлением двух или нескольких металлов и неметаллов. Такие сплавы должны обладать хорошей жидкотекучестью и теплопроводностью, повышенной пластичностью и др. Практическое значение литейных сплавов определяет то, что они по некоторым свойствам (прочности, твердости, способности воспроизводить очертания литейных форм, обрабатываемости режущим инструментом и др.) превосходят чистые металлы. Важное место в литейном производстве занимают сплавы с особыми физическими свойствами (например, электропроводностью, магнитной проницаемостью и др.).

Сплавы в зависимости от химического состава отличаются друг от друга температурой плавления, химической активностью, вязкостью в расплавленном состоянии, прочностью, пластичностью и другими свойствами. Для производства фасонных отливок применяют серые, высокопрочные, ковкие и другие чугуны, углеродистые и легированные стали, сплавы алюминия, магния, меди, титана и др.

1.4.1 Литейные свойства сплавов

Не все сплавы в одинаковой степени пригодны для изготовления фасонных отливок. Из одних сплавов (серого чугуна, силумина) можно легко изготовить отливку сложной конфигурации, а из других (титановых сплавов, легированных сталей и др.) получение отливок сопряжено с определенными трудностями. Получение качественных отливок без раковин, трещин и других дефектов зависит от литейных свойств сплавов. К основным литейным

свойствам сплавов относят жидкотекучесть, усадку сплавов, склонность к образованию трещин, газопоглощение и ликвацию.

Жидкотекучесть способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки. При высокой жидкотекучести литейные сплавы заполняют все элементы литейной формы, при низкой — полость формы заполняется частично, в узких сечениях образуются недоливы. Жидкотекучесть сплавов определяют по специальным пробам. За меру жидкотекучести принимают длину заполненной спирали в литейной форме, и она зависит от многих факторов. Например, повышение температуры заливки увеличивает жидкотекучесть всех сплавов. Чем выше теплопроводность материала формы, тем быстрее отводится тепло от залитого металла, тем ниже жидкотекучесть. Неметаллические включения снижают жидкотекучесть сплавов. На жидкотекучесть влияет химический состав сплавов: с увеличением в исходном материале содержания серы, кислорода и хрома жидкотекучесть снижается, а с повышением содержания фосфора, кремния, алюминия, углерода - увеличивается.

В зависимости от жидкотекучести сплава выбирают минимальную толщину стенок отливок. Например, при изготовлении мелких отливок из серого чугуна в песчаных формах минимальная толщина стенок составляет 3— 4 мм, для средних — 8—10 мм, в для крупных — 12—15 мм; для стальных отливок, соответственно, 5—7, 10—12, 15—20 мм.

Усадка процесс уменьшения объема отливки при охлаждении, начиная с некоторой температуры жидкого металла в литейной форме до температуры окружающей среды. Усадка протекает в жидком состоянии, при затвердевании в процессе кристаллизации и в твердом состоянии. Различают линейную и объемную усадки, которые определяют в процентах. Величина усадки сплавов зависит от их химического состава, температуры заливки, конфигурации отливки и других факторов. Наименьшую линейную усадку имеет серый чугун (0,9—1,3 %) и алюминиевые сплавы — силумины (0,9—1,3 %). Стали и некоторые сплавы цветных металлов имеют усадку от 1,8 до 2,5 %. Изготовлять отливки из сплавов с повышенной усадкой сложно, так как в массивных частях отливки образуются усадочные раковины и усадочная пористость. Для предупреждения образования усадочных раковин предусматривают установку прибылей — дополнительных резервуаров с расплавленным металлом для питания отливок в процессе их затвердевания.

Напряжения в отливках возникают вследствие неравномерного их

охлаждения и механического торможения усадки. Они характерны для отливок с различной толщиной стенок. При затвердевании температура отливки в массивных частях выше, чем снаружи или в тонких сечениях. Поэтому усадка в отдельных местах по величине различна, но так как части одной и той же отливки не могут изменять свои размеры независимо друг от друга, то в ней возникают напряжения, которые могут вызывать образование трещин или коробление. Для предупреждения образования больших напряжений и трещин необходимо в конструкции литой детали предусматривать равномерную толщину стенок, плавные переходы и устранять элементы, затрудняющие усадку сплава, а также использовать литейные формы и стержни повышенной податливости. Трещины довольно часто образуются в отливках из углеродистых и легированных сталей, сплавов магния и многих алюминиевых сплавов (подробнее о дефектах см. раздел 5).

Газопоглощениеспособность литейных сплавов в расплавленном состоянии растворять водород, азот, кислород и другие газы. Степень растворимости газов зависит от состояния сплава: с повышением температуры твердого сплава она увеличивается незначительно, несколько возрастает при плавлении и резко повышается при перегреве расплава. При затвердевании и последующем охлаждении растворимость газов уменьшается, и в результате их выделения в отливке могут образоваться газовые раковины и поры. Растворимость газов зависит от химического состава сплава, температуры заливки, вязкости сплава и свойств литейной формы. Для уменьшения газонасыщенности сплавов применяют плавление в вакууме или в среде инертных газов и другие методы.

Ликвация — неоднородность химического состава в различных частях отливки. Различают ликвации зональную и дендритную (внутризеренную). Зональная ликвация — это химическая неоднородность в объеме всей затвердевшей литой детали. Дендритная ликвация — химическая неоднородность в пределах одного зерна (дендрита) сплава. Ликвация зависит от химического состава сплава, конфигурации отливки, скорости охлаждения и других факторов.

1.4.2 Сплавы на основе черных металлов

Статически нагруженные детали преимущественно изготавливают из чугуна, так как он дешевле стали. В зависимости от состояния углерода в сплаве чугуны подразделяют на белые, серые, высокопрочные и ковкие.

Белые чугуны – в них весь углерод связан с железом в виде цементита. Подразделяют на доэвтектические, эвтектические и заэвтектические. Из–за большого количества цементита эти чугуны твердые и хрупкие и для изготовления деталей машин практически не используются.

Серые чугуны - в них углерод представлен в виде пластинчатого графита. Приняты следующие марки: СЧ 10, СЧ 15, СЧ 25, СЧ 35 (цифры показывают временное сопротивление при растяжении (в МПа), уменьшенное в 10 раз).

Серый чугун (состав в %: 2,8—3,5 С; 1,8—2,5 Si; 0,5—0,8 Мп; до 0,6 Р и до 0,12 S) имеет достаточно высокую прочность, высокую циклическую вязкость, легко обрабатываем и дешев. Недостатком серого чугуна является низкая ударная вязкость и хрупкость. Прочность серых чугунов обусловлена пластинчатой формой графитовых включений и прочностью металлической основы, которая носит название ферритной, перлитной, ферритно-перлитной. Наименьшую прочность имеет ферритная структура, а наибольшую — перлитная. Из серого чугуна изготовляют детали с повышенной прочностью, работающие при высоких нагрузках или тяжелых условиях износа (станины станков, корпуса и крышки редукторов, шкивы и другие отливки).

а)

б)

в)

а) — серого; б) — высокопрочного; в) — ковкого

1 — пластинчатый графит; 2 — шаровидный графит;

3 — хлопьевидный графит; 4 — феррит; 5 - перлит

Рисунок 8 - Схемы микроструктур чугуна

Высокопрочный чугун (состав в мас. %: 3,2—3,6 С; 1,6—2,9 Si; 0,4—0,9 Мп; не более 0,15 Р; не более 0,02 S; не менее 0,04 Мg) обладает высокой прочностью, пластичностью, хорошо обрабатывается. Высокие механические свойства этих чугунов получают обработкой расплавленного чугуна магнием или церием, при которой графит принимает шаровидную форму (рисунок 8 б). Высокопрочные чугуны имеют различную структуру металлической основы, в том числе ферритную, ферритно-перлитную, перлитную, что и обусловило их различную прочность. В высокопрочных чугунах графит имеет шаровидную форму (рисунок 8 б). Его марки ВЧ 35, ВЧ 45, ВЧ 60, ВЧ 80, ВЧ 100. Высокопрочные чугуны эффективно заменяют сталь во многих изделиях и конструкциях. Из него получают ответственные тяжелонагруженные детали: коленчатые валы, барабаны шахтных вагонеток, шатуны и др.

Вчугунах с вермикулярным графитом до 40 % графита шаровидного, а остальной в вермикулярной форме (в виде мелких тонких прожилок). Маркируют их - ЧВГ 30, ЧВГ 35, ЧВГ 40, ЧВГ 45.

По механическим свойствам эти чугуны занимают промежуточное положение между серыми и высокопрочными чугунами. Из них изготавливают (отливают) блоки, поршни, гильзы и крышки цилиндров.

Вковких чугунах (КЧ 30-6, КЧ 35-8, КЧ 37-12, КЧ 45-7, КЧ 60-3 и КЧ 80- 1,5) графит имеет хлопьевидную форму. Первая цифра, как и в других чугунах, указывают уменьшенное в 10 раз значение временного сопротивления при растяжении (в МПа), а вторая - значение относительного удлинения в процентах. Ковкий чугун (состав в масс. %: 2,4—2,8 С; 0,8—1,4 Si; менее 1 % Мп; примерно 0,2 Р; примерно 0,1 S) по прочности превосходит серые чугуны

иимеет высокую пластичность. Получают ковкий чугун при отжиге отливок из белого чугуна (в белом чугуне углерод почти полностью находится в связанном

состоянии в виде Fe3C) в течение 30—60 ч при температуре 900—1050 °С. При отжиге образуется графит в виде хлопьев (рисунок 8 в). В зависимости от условий отжига ковкий чугун может быть ферритным, ферритно-перлитным и перлитным. Из ковких чугунов изготавливают детали высокой прочности, работающие в тяжелых условиях износа, и способные принимать ударные и знакопеременные нагрузки (корпусов пневматического инструмента, ступиц, кронштейнов, звеньев цепей и других деталей).

Жесткие, прочные, стойкие к удару и нагреву детали изготавливают из конструкционной углеродистой или легированной стали. По назначению стали бывают конструкционные, инструментальные и специальные.

По качеству все стали подразделяют по содержанию серы и фосфора на обыкновенные (до 0,05 % S и 0,04 % Р), качественные (не более 0,04 % S и 0,035 % Р), высококачественные (не более 0,025 % S и 0,025 % Р) и особовысококачественные (не более 0,015 % S и 0,025 % Р).

Углеродистые стали (состав в масс. %: 0,12—0,6 С; 0,2—0,5 Si; 0,5—0,8

Мп; до 0,05 Р и до 0,05 S) имеют более высокие механические свойства, чем серый и ковкий чугуны. Структура литой стали состоит из перлита и феррита. Чем больше в ней перлита, тем выше прочность и ниже вязкость. Углеродистые стали применяют для изготовления различных цилиндров, станин прокатных станов, зубчатых колес и других изделий. Качественная углеродистая конструкционная сталь обозначается сотыми долями процента углерода, например, сталь 35 содержит 0,35 % углерода.

Легированные стали отличаются от углеродистых составом легирующих, т. е. дополнительно добавленных элементов (хром, никель, молибден, титан и др.) или повышенным содержанием марганца и кремния. Легирующие элементы придают стали высокую коррозионную стойкость, жаропрочность и другие специальные свойства. Легированная конструкционная сталь обозначается буквенно-цифровым индексом, например, сталь марки 45ХН2А. Цифра 45сотые доли процента углерода, буквы - обозначение легирующих элементов Х - хром, Н - никель, цифра 2-процентное содержание элемента в легированной стали, никеля 2 %, отсутствие цифры после буквы указывает, что количество легирующего элемента (хрома) ~1 %, обозначение других легирующих элементов Г - марганец, С - кремний, В - вольфрам, Т - титан, Ю - алюминий, Д - медь, М - молибден, Ф - ванадий, Б - ниобий, Р - бор, К – кобальт. Значение буквы А в маркировке стали зависит от места ее написания. В начале шифра она обозначает автоматную сталь, в середине шифра – количество азота в сплаве, в конце шифра - высококачественную сталь. Из легированных сталей получают турбинные лопатки, коллекторы выхлопных систем, различную арматуру и прочие подобные детали.

Инструментальные стали бывают углеродистые, обозначают от У 7 до У 13 (цифры означают десятые доли процента углерода в сплаве) и легированные, например, 9ХС, ШХ9, ШХ15 и стали карбидного класса Х12М, Х6ВФ, в том числе и быстрорежущие (рапид) Р6М5 и Р18 (цифра после Р – процентное содержание вольфрама в сплаве).