Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпаргалка По Химии Полимеров К Экзамену Для Дневников (Зименкова Л. П.).doc
Скачиваний:
27
Добавлен:
07.10.2014
Размер:
257.54 Кб
Скачать

40. Модуляция как способ дискретизации изображения. Применение в полиграфии.

Модуляция сигнала (явление)- это изменение сигнала по определенному закону, который можно рассматривать как произведение функции самого сигнала (модулирующую функция) и модулируемой функции (представляет периодическую функцию, синусоидальную и имеет более высокую частоту чем модулирующая), часто модулирующую функцию называют текущей. Для полиграфической репродукции моделирующая ф-ция- несущая. Модуляция воздействует на амплитудн. частоту или фазу моделируемой функции. Различают амплитудную, частотную и фазовую модуляцию. Помимо классической модуляции используется импульсная модуляция. Она отличается тем, что у нее модулируемый сигнал имеет форму прямоугольных импульсов. ИМ пиксельной структуры изображения. Возникает пиксельная структура., возникающая в процессе сканирования является основным этапом превращения из аналогового сигнала в цифровой. Явления при АИМ: В процессе сканирования изображение разбивается на элементы (пиксели), каждый пиксель импульс. А амплитуда сигнала пикселя соответствует мощности считываемого сигнала. Можем представить себе схематически в виде аналогового сигнала, который умножается на импульсы. E(x)- сигнал аи= (амплитуда импульса описывается -функцией. E*(x)=E(x)(сумма)(сигма)(x+nx)

10. Методы описания градации. Градация- это последовательность тонов. Оригинал характеризуется параметрами: Коэф. поглощения, коэф. отражения, коэф. пропускания и оптич. плотностью. Градация характериз. форму изображения объема. Градация – последовательный ряд величин параметра оригинала, расположен. по возрастанию или убыванию. Характеристики по градации: 1) Контраст- эффект качества и количества между самым темным и самым светлым участком изображения (для первичного оригинала) Выражается величинами яркости. 2) Градиент изображения- скорость приращения оцениваемого параметра по всему динамическому диапазону тоновой шкалы или ее отдельных зонах. Используется для количественной оценки процесса преобразования градации в данной системе.

11. Возможности количественной оценки градации. Градационная характеристика – количественная связь между параметрами исходного и полученного изображения возникающего в результате градационного преобразования в системе. Градиент может быть оценен как средний по всему динамическому диапазону, так и по его отдельным зонам. Контрастность- мера применяемая для оценки градационной характеристики процесса преобразования изображения. Она является частным случаем понятия градации. Градация несет в себе большой объем информации, может быть по разному рассредоточены. Для количественной характеристики зон используется понятие гистограммы- графическое представление распределения доли площади анализируемого изображения которая занимает участки имеющие определенную величину параметра изображения в зависимости от величины этого параметра.

41. Спектральное представление дискретного изображения при амплитудно-импульсной дискретизации.

Спектр произведений функции равен свертке спектров этой функции. Пусть Е(x)  F() при преобразовании Фурье дискретизиров.  (ч+nX)  - (-n/x)

Найдем свертку 2-х Фурье функций. F*()= n= - F(-n/x) Представим себе в графич. виде спектр. функций

В результате импульсной дискретизации в спектр. пространстве помимо спектров исходного сигнала F() появляется бесчисленное множество смещенных спектров этого сигнала. Они повторяют спектр исходного сигнала, но отстают от него на интервалы +-1/x; +- 2/x; +-3/x; +- n/x Следовательно, получаем размножение спектров смещения, кратное n/x

Чем меньше шаг дискретизации, тем дальше спектры будут разнесены (расширяется полоса частот). Чем выше разрешающая способность при сканировании, тем полоса частот будет меньше. Производя АИМ, сталкиваемся с проблемой расширения спектров, после прохождения системы стоит вопрос о восстановлении сигнала. Простейшим методом восстановления сигнала является фильтрация сигнала.

12. Метод функции размытия точки и линии. Однозначную модель структурных свойств системы можно построить на основе метода функции размытия точки или связанных с ней функций. Этот метод справедлив для линейных систем, но для нелинейных систем метод может быть обобщен на основе включения дополнительных нелинейных преобразований на конечной стадии процесса. Допустим что все изображение состоит из большого множества мелких точек. Каждая точка несет яркость, импульс. Без размытия каждый из этих импульсов представляет собой -функцию. -функция это импульс приложенный к бесконечно малой точке. Если в системе имеется размытие, то -импульс превращается в конечную функцию. g(x,y) функция размытия точки. Функция размытия точки- это то распределение интенсивности которое превращает единичные импульсы в реальное изображение. ФРТ удовлетворяет всем требованиям и позволяет рассчитать изображение любой детали, которое нас может интересовать, если эта деталь производится в системе с размытием. Если ФРТ является симметричной по окружности, то можно перейти от ФРТ к ФРЛ. Система которая дает круговую симметрию функции размытия называется изотропной. g(x)= g(x,y)dy.