Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Corrosion of Ceramic and Composite Materials.pdf
Скачиваний:
173
Добавлен:
15.11.2014
Размер:
4.48 Mб
Скачать

Fundamentals

109

11.Discuss the difference between electrochemical and chemical dissolution. What material parameters are important in each type?

12.Describe how one tells whether solid-solid corrosion occurs by bulk, grain boundary, or surface diffusion.

REFERENCES

2.1.Phase Diagrams for Ceramists. Vol. I-XII, Am. Ceram. Soc., Westerville, Ohio.

2.2.Cooper, A.R. The use of phase diagrams in dissolution studies. In Refractory Materials; Alper, A.M., Ed.; Academic Press: New York, 1970; Vol. 6-III, 237–250.

2.3.Kramer, D.P.; Osborne, N.R. Effects of atmosphere and dew point on the wetting characteristics of a glass-ceramic on two nickel-based superalloys. In Ceramic Engineering and Science Proceedings; Smothers, W.J., Ed.; Am. Ceram. Soc. Westerville, Ohio, 1983; 4 (9–10), 740–750.

2.4.Noyes, A.A.; Whitney, W.R. Rate of solution of solid materials in their own solutions. (Ger) Z.Physik. Chem. 1897, 23, 689–692.

2.5.Nernst, W. Theory of reaction velocities in heterogeneous systems. (Ger) Z.Physik. Chem. 47, 52–55.

2.6.Berthoud, A. Formation of crystal faces. J.Chem. Phys. 10, 624–635, 1912.

2.7.Prandtl, L. NACE Tech. Memo. No. 452, 1928.

2.8.Levich, B.G. Physicochemical Hydrodynamics; Prentice Hall: Englewood Cliffs, NJ, 1962.

2.9.Levich, E.G. Theory of concentration polarization. Discuss. Faraday Soc. 1, 37–43, 1947.

2.10.Cooper, A.R., Jr.; Kingery, W.D. Dissolution in ceramic systems: I, Molecular diffusion, natural convection, and forced convection studies of sapphire dissolution in calcium aluminum silicate. J. Am. Ceram. Soc. 1964, 47 (1), 37–3.

2.11.Samaddar, B.N.; Kingery, W.D.; Cooper, A.R., Jr. Dissolution in ceramic systems: II, Dissolution of alumina, mullite,

Copyright © 2004 by Marcel Dekker, Inc.

110

Chapter 2

anorthite, and silica in a calcium-aluminum-silicate slag. J. Am. Ceram. Soc. 1964, 47 (5), 249–254.

2.12.Oishi, Y.; Copper, A.R., Jr.; Kingery, W.D. Dissolution in ceramic systems: III, Boundary layer concentration gradients. J. Am. Ceram. Soc. 1965, 48 (2), 88–95.

2.13.Hrma, P. Contribution to the study of the function between the rate of isothermal corrosion and glass composition. (Fr) Verres Refract. 1970, 24 (4–5), 166–168.

2.14.Lakatos, T.; Simmingskold, B. Influence of constituents on the corrosion of pot clays by molten glass. Glass Technol. 1967, 8 (2), 43–47.

2.15.Lakatos, T.; Simmingskold, B. Corrosion effect of glasses

containing Na2O-CaO-MgO-Al2O3-SiO2 on tank blocks Corhart ZAC and sillimanite. Glastek. Tidskr. 1967, 22 (5), 107–113.

2.16.Lakatos, T.; Simmingskold, B. Influence of viscosity and chemical composition of glass on its corrosion of sintered alumina and silica glass. Glastek. Tidskr. 1971, 26 (4), 58–68.

2.17.Chung, Y.-.D.; Schlesinger, M.E. Interaction of CaO-FeO-

SiO2 slags with partially stabilized zirconia. J. Am. Ceram. Soc. 1994, 77 (3), 612.

2.18.Pons, A.; Parent, A. The activity of the oxygen ion in glasses and its effect on the corrosion of refractories. (Fr) Verres Refract. 1969, 23 (3), 324–333.

2.19.Blau, H.H.; Smith, C.D. Refractory problems in glass manufacture. Bull. Am. Ceram. Soc. 1950, 29 (1), 6–9.

2.20.Woolley, F.E. Prediction of refractory corrosion rate from glass viscosity and composition. In UNITECR ’89 Proceedings; Trostel, L.J., Jr., Ed.; Am. Ceram. Soc. Westerville, OH, 1989, 768–779.

2.21.Fox, D.S.; Jacobson, N.S.; Smialek, J.L. Hot corrosion of silicon carbide and nitride at 1000°C. In Ceramic Transactions: Corrosion and Corrosive Degradation of Ceramics; Tressler, R.E., McNallan, M., Eds.; Am. Ceram. Soc. Westerville, OH, 1990; Vol. 10, 227–249.

2.22.Jacobson, N.S.; Stearns, C.A.; Smialek, J.L.Burner rig

Copyright © 2004 by Marcel Dekker, Inc.

Fundamentals

111

corrosion of SiC at 1000°C. Adv. Ceram. Mater. 1986, 1 (2), 154–161.

2.23.Cook, L.P.; Bonnell, D.W.; Rathnamma, D.Model for molten salt corrosion of ceramics. In Ceramic Transactions: Corrosion and Corrosive Degradation of Ceramics; Tressler, R.E., McNallan, M., Eds.; Am Ceram. Soc. Westerville, OH, 1990; Vol. 10, 251–275.

2.24.Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident & Reflected Shocks, and ChapmanJongnet Detonations. NASA SP-273, US Printing Office: Washington, DC, 1971.

2.25.Borom, M.P.; Arendt, R.H.; Cook, N.C. Dissolution of oxides of Y, Al, Mg, and La by molten fluorides. Ceram. Bull. 1981, 60 (11), 1168–1174.

2.26.Le Clerc, P.; Peyches, I. Polarization of refractory oxides immersed in molten glass. (Fr) Verres Refract. 1953, 7 (6), 339–345.

2.27.Godrin, Y. Review of the Literature on Electrochemical Phenomena. International Commission on Glass: Paris, 1975.

2.28.Vetter, K.J. Electrochemical Kinetics; Academic Press: New York, 1967.

2.29.Wall, F.D.; Taylor, S.R.; Cahen, G.L. The simulation and detection of electrochemical damage in BMI/graphite fiber composites using electrochemical impedance spectroscopy. In High Temperature and Environmental Effects on Polymeric Composites, STP 1174; Harris, C.E., Gates, T.S., Eds.; ASTM: Philadelphia, PA, 1993; 95–113.

2.30.Lindsay, J.G.; Bakker, W.T.; Dewing, E.W. Chemical resistance of refractories to Al and Al-Mg alloys. J. Am. Ceram. Soc. 1964, 47 (2), 90–94.

2.31.Busby, T.Hotter refractories increase the risk of downward drilling. Glass Ind. 1992, 73 (1), 20, 24.

2.32.Lasaga, A.C. Atomic treatment of mineral-water surface reactions. In Reviews in Mineralogy, Mineral-Water Interface Geochemistry; Hochella, M.F., Jr., White, A.F., Eds.; Mineral. Soc. Am. Washington, DC, 1990; Vol. 23, 17–85. Chp. 2.

Copyright © 2004 by Marcel Dekker, Inc.

112

Chapter 2

2.33.Marshall, C.E. The Physical Chemistry and Mineralogy of Soils: Soils in Place; Wiley & Sons: New York, 1977; Vol. II.

2.34.Huang, P.M.Feldspars, olivines, pyroxenes, and amphiboles. In Minerals in Soil Environments; Dinauer, R.C., Ed.; Soil Sci. Soc. Am. Madison, WI, 1977, 553–602. Chp. 15.

2.35.Casey, W.H.; Bunker, B.Leaching of mineral and glass surfaces during dissolution. In Reviews in Mineralogy, Vol. 23: Mineral-Water Interface Geochemistry; Hochella, M.F., Jr., White, A.F., Eds.; Mineral Soc. Am. Washington, DC, 1990; Vol. 23, 397–426. Chp. 10.

2.36.Borchardt, C.A. Montmorillonite and other smectite minerals. In Minerals in Soil Environments; Dinauer, R.C., Ed.; Soil Sci. Soc. Am. Madison, WI, 1977, 293–330. Chp. 9.

2.37.Schnitzer, M.; Kodama, H. Reactions of minerals with soil humic substances. In Minerals in Soil Environments; Dinauer, R.C., Ed.; Soil Sci. Soc. Am. Madison, WI, 1977, 741–770. Chp. 21.

2.38.Jennings, H.M. Aqueous solubility relationships for two types of calcium silicate hydrate. J. Am. Ceram. Soc. 1986, 69 (8), 614–618.

2.39.Marshall, C.E. The Physical Chemistry and Mineralogy of Soils: Soil Materials; Krieger Publishing Company: Huntington, NY, 1975; Vol. I.

2.40.Elmer, T.H. Role of acid concentration in leaching of cordierite and alkali borosilicate glass. J.Am.Ceram. Soc. 1985, 68 (10), C273-C274.

2.41.Burns, R.G. Mineralogical Applications of Crystal Field Theory; Cambridge University Press: London, 1970; 162– 167.

2.42.Hawkins, D.B.; Roy, R. Distribution of trace elements between clays and zeolites formed by hydrothermal alteration of synthetic basalts. Geochim. Cosmochim. Acta 1963, 27 (165), 785–795.

2.43.Shaw, D.J. Charged interfaces. Introduction to Colloid and Surface Chemistry, 3rd Ed.; Butterworths: London, 1980; 148–182. Chp. 7.

2.44.Brady, P.V.; House, W.A. Surface-controlled dissolution and

Copyright © 2004 by Marcel Dekker, Inc.

Fundamentals

113

growth of minerals. In Physics and Chemistry of Mineral Surfaces; Brady, P.V., Ed.; CRC Press: New York; 1996, 225–

305. Chp. 4.

2.45.Parks, G.A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 1965, 65 (2), 177–198.

2.46.Diggle, J.W. Dissolution of oxide phases. In Oxides and Oxide Films; Diggle, J.W., Ed.; Marcel Dekker: New York, 1973; Vol. 2, 281–386. Chp. 4.

2.47.Bright, E.; Readey, D.W. Dissolution kinetics of TiO2 in HFHCl solutions. J. Am. Ceram. Soc. 1987, 70 (12), 900–906.

2.48.Hulbert, S.F.; Bokros, J.C.; Hench, L.L.; Wilson, J.; Heimke, G. In High Tech Ceramics; Vincenzini, P., Ed.; Elsevier Science Pub. B.V.: Amsterdam, 1987; 180–213.

2.49.Hench, L.L.; Wilson, J. Introduction. An Introduction to Bioceramics, Advanced Series in Ceramics. World Scientific Publishing Co. Ltd.: Singapore, 1993; Vol. 1, 1–24.

2.50.Reviews in Mineralogy, Health Effects of Mineral Dusts.;

Guthrie, G.D., Jr., Mossman, T., Eds.; Mineral. Soc. Am. Washington, DC, 1993; Vol. 28.

2.51.Nolan, R.P.; Langer, A.M. Limitations of the Stanton hypothesis. In Health Effects of Mineral Dusts; Guthrie, G.D., Jr., Mossman, T., Eds.; Reviews in Mineralogy. Min. Soc. Am. Washington, DC, 1993; Vol. 28. Chp. 9.

2.52.Correns, C.W. Growth and dissolution of crystals under linear pressure. Discuss. Faraday Soc. No. 5; 1949, 267–271.

2.53.Winkler, E.M. Salt action on stone in urban buildings. In

Application of Science in Examination of Works of Art; Joung, W.J., Ed.; Museum of Fine Arts: Boston, 1973.

2.54.Skoulikidis, T.N. Atmospheric corrosion of concrete reinforcements, limestones, and marbles. In Atmospheric Corrosion; Ailor, W.H., Ed.; John Wiley & Sons: New York, 1982; 807–825.

2.55.Amoroso, G.G.; Fassina, V. Stone Decay and Conservation;

Elsevier: Amsterdam, 1983; 12.

2.56.Hoffmann, M.R.Fog and cloud water deposition. In Materials Degradation Caused by Acid Rain; ACS Symposium Series

Copyright © 2004 by Marcel Dekker, Inc.

114

Chapter 2

318; Baboian, R., Ed.; Am. Chem. Soc. Washington, DC, 1986; 64–91.

2.57.Mulawa, P.A.; Cadle, S.H.; Lipari, F.; Ang, C.C.; Vandervennet, R.T. Urban dew: Composition and influence on dry deposition rates. In Materials Degradation Caused by Acid Rain, ACS Symposium Series 318; Baboian, R., Ed.; Am. Chem. Soc. Washington, DC, 1986; 61–91.

2.58.Semonin, R.G. Wet deposition chemistry. In Materials Degradation Caused by Acid Rain, ACS Symposium Series 318; Baboian, R., Ed.; Am. Chem. Soc. Washington, DC, 1986; 23–41.

2.59.Neal, K.M.; Newnam, S.H.; Pokorney, L.M.; Rybarczyk, J.P. Elemental analysis of simulated acid rain stripping of Indiana limestone, marble, and bronze. In Materials Degradation Caused by Acid Rain, ACS Symposium Series 318; Baboian, R., Ed.; Am. Chem. Soc. Washington, DC, 1986; 285–300.

2.60.Reddy, M.M.; Sherwood, S.I.; Doe, B.R.Limestone and marble dissolution by acid rain: An onsite weathering experiment. In Materials Degradation Caused by Acid Rain,

ACS Symposium Series 318; Baboian, R., Ed.; Am. Chem. Soc. Washington, DC, 1986; 226–238.

2.61.Kobussen, A.G. Corrosion in condensing gas-fired central heating boilers. In Dewpoint Corrosion; Holmes, D.R., Ed.; Ellis Horwood Ltd.: Chichester, UK, 1985; 179–190.

2.62.Penkett, S.A. Chemical changes in the air. SCI Sulfur Symposium; May 1979; 109–122.

2.63.Cox, W.M.; Farrell, D.M; Dawson, J.L.Corrosion monitoring for process control. In Dewpoint Corrosion; Holmes, D.R., Ed.; Ellis Horwood Ltd.: Chichester, UK, 1985; 191–217.

2.64.Cussler, E.L.; Featherstone, J.D.B. Demineralization of porous solids. Science Aug. 1981, 213, 1018–1019.

2.65.Yoshimura, M.; Hiuga, T.; Somiya, S. Dissolution & reaction of yttria-stabilized zirconia single crystals in hydrothermal solutions. J. Am. Ceram. Soc. 1986, 69 (7), 583–584.

2.66.Sato, T.; Ohtaki, S.; Shimada, M. Transformation of yttria partially stabilized zirconia by low temperature annealing in air. J.Mater. Sci. 1985, 20 (4), 1466–1470.

Copyright © 2004 by Marcel Dekker, Inc.

Fundamentals

115

2.67.Janowski, K.R.; Rossi, R.C. Mechanical degradation of MgO by water vapor. J. Am. Ceram. Soc. 1968, 51 (8), 453–455.

2.68.White, W.B. Glass structure and glass durability. In Materials Stability and Environmental Degradation, Materials Research Society Symposium Proceedings; Barkatt, A., Verink, E.D., Jr., Smith, L.R., Eds.; Mater. Res. Soc. Pittsburgh, PA, 1988; Vol. 125, 109–114.

2.69.Wald, J.W.; Messier, D.R.; DeGuire, E.J. Leaching behavior of Si-Y-Al-O-N glasses. Int. J. High Technol. Ceram. 1986, 2 (1), 65–72.

2.70.Douglas, R.W.; El-Shamy, T.M.M. Reaction of glass with aqueous solutions. J. Am. Ceram. Soc. 1967, 50 (1), 1–8.

2.71.Jantzen, C.M. Thermodynamic approach to glass corrosion. In Corrosion of Glass, Ceramics, & Ceramic Superconductors; Clark, D.E., Zoitos, B.K., Eds.; Noyes Publications: Park Ridge, NJ, 1992; 153–217. Chp. 6.

2.72.Newton, R.G.; Paul, A. A new approach to predicting the durability of glasses from their chemical compositions. Glass Technol. 1980, 21 (6), 307–309.

2.73.Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solution; NACE: Houston, TX, 1974. Eng Trans by J.A.Franklin.

2.74.Garrels, R.M.; Christ, C.L. Solutions, Minerals, and Equilibria; Harper and Row: New York, 1965.

2.75.Hench, L.L.; Clark, D.E. Physical chemistry of glass surfaces. J. Non-Cryst. Solids 1978, 28, 83–105.

2.76.McVay, G.L.; Peterson, L.R. Effect of gamma radiation on glass leaching. J. Am. Ceram. Soc. 1981, 64 (3), 154–158.

2.77.Hogenson, D.K.; Healy, J.H. Mathematical treatment of glass corrosion data. J.Am. Ceram. Soc. 1962, 45 (4), 178– 181.

2.78.Budd, S.M. The mechanism of chemical reaction between silicate glass and attacking agents; Part 1. Electrophilic and nucleophilic mechanism of attack. Phys. Chem. Glasses 1961, 2 (4), 111–114.

2.79.Budd, S.M.; Frackiewicz, J. The mechanism of chemical reaction between silicate glass and attacking agents; Part 2.

Copyright © 2004 by Marcel Dekker, Inc.

116

Chapter 2

Chemical equilibria at glass-solution interfaces. Phys. Chem. Glasses 1961, 2 (4), 115–118.

2.80.Simmons, C.J.; Simmons, J.H. Chemical durability of fluoride Glasses: I, Reaction of fluorozirconate glasses with water. J.Am. Ceram. Soc. 1986, 69 (9), 661–669.

2.81.Thomas, W.F. An investigation of the factors likely to affect the strength and properties of glass fibers. Phys. Chem. Glasses 1960, 1 (1), 4–18.

2.82.Wojnarovits, I. Behavior of glass fibers in strong acidic and alkaline media. J. Am. Ceram. Soc. 1983, 66 (12), 896–898.

2.83.Hench, L.L. Bioactive glasses help heal, repair and build human tissue. Glass Res. 2002–2003, 12 (1–2), 18.

2.84.White, J.E.; Day, D.E. Rare earth aluminosilicate glasses for in vivo radiation delivery. In Rare Elements in Glasses; Key Engineering Materials; Shelby, J.E., Ed.; Trans Tech Pub., Switzerland, 1994; Vols. 94–95, 181–208.

2.85.Oda, K.; Yoshio, T. Properties of Y2O3-Al2O3-SiO2 glasses as a model system of grain boundary phase of Si3N4 ceramics, Part 2: Leaching characteristics. J.Ceram. Soc. Jpn. 1991, 99 (11), 1150–1152.

2.86.Erbe, E.M.; Day, D.E. In Proceedings: Science & Tech of New Glasses; Sakka, S., Soga, N., Eds.; Ceram. Soc. Japan: Tokyo, 1991.

2.87.Conzone, C.D.; Brown, R.F.; Day, D.E.; Ehrhardt, G.J. In vitro and in vivo dissolution behavior of a dysprosium lithium borate glass designed for the radiation synovectomy treatment of rheumatoid arthritis. J.Biomed. Mater. Res. 2002, 60 (2), 260–268.

2.88.Day, D.E. Reactions of bioactive borate glasses with physiological liquids. Glass Res. 2002–2003, 12 (1–2), 21–22.

2.89.Bauer, J.F. Corrosion and surface effects of glass fiber in biological fluids. Glass Res. 2000, 9 (2), 4–5.

2.90.Kubaschewski, O.; Hopkins, B.E. Oxidation of Metals and Alloys; Butterworths: London, 1962.

2.91.Readey, D.W. Gaseous corrosion of ceramics. In Ceramic Transactions, Corrosion and Corrosive Degradation of

Copyright © 2004 by Marcel Dekker, Inc.

Fundamentals

117

Ceramics; Tressler, R.E., McNallan, M., Eds.; Am. Ceram. Soc., Westerville, OH, 1990; Vol. 10, 53–80.

2.92.Yokokawa, H.; Kawada, T.; Dokiya, M. Construction of chemical potential diagrams for metal-metal-nonmetal systems: Applications to the decomposition of double oxides. J. Am. Ceram. Soc. 1989, 72 (11), 2104–2110.

2.93.Grimley, R.T.; Burns, R.P.; Inghram, M.G. Thermodynamics

of vaporization of Cr2O3: Dissociation energies of CrO, CrO2 and CrO3. J. Chem. Phys. 1961, 34 (2), 664–667.

2.94.Graham, H.C.; Davis, H.H. Oxidation/vaporization kinetics of Cr2O3. J. Am. Ceram. Soc. 1971, 54 (2), 89–93.

2.95.Pilling, N.B.; Bedworth, R.E. The oxidation of metals at high temperature. J. Inst. Met. 1923, 29, 529–591.

2.96.Jorgensen, P.J.; Wadsworth, M.E.; Cutler, I.B. Effects of oxygen partial pressure on the oxidation of silicon carbide. J. Am. Ceram. Soc. 1960, 43 (4), 209–212.

2.97.Engell, H.J.; Hauffe, K. Influence of adsorption phenomena on oxidation of metals at high temperatures. Metall 1952, 6, 285–291.

2.98.Langmuir, I. Evaporation of small spheres. Phys. Rev. 1918, 12 (5), 368–370.

2.99.Tichane, R.M.; Carrier, G.B. The microstructure of a sodalime glass surface. J. Am. Ceram. Soc. 1961, 44 (12), 606–610.

2.100. Simpson, H.E. Study of surface structure of glass as related to its durability. J. Am. Ceram. Soc. 1958, 41 (2), 43–9.

2.101. Tichane, R.M. Initial stages of the weathering process on a soda-lime glass surface. Glass Technol. 1966, 7 (1), 26–29.

2.102. Burggraaf, A.J.; van Velzen, H.C. Glasses resistant to sodium vapor at temperatures to 700°C. J. Am. Ceram. Soc. 1969, 52 (5), 238–242.

2.103. Johnston, W.D.; Chelko, A.J. Reduction of ions in glass by hydrogen. J. Am. Ceram. Soc. 1970, 53 (6), 295–301.

2.104. Gibson, A.S.; LaFemina, J.P. Structure of mineral surfaces. In

Physics and Chemistry of Mineral Surfaces; Brady, P.V., Ed.; CRC Press: New York, 1996; 1–62.

Copyright © 2004 by Marcel Dekker, Inc.

118

Chapter 2

2.105. Hochella, M.F. Jr.; White, A.F. Mineral-Water Interface Geochemistry; Rev. Mineral; 23 pp.

2.106. Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. 1921, 7, 115–116.

2.107. Smithwick, R.W.; Fuller, E.L. A generalized analysis of hysteresis in mercury porosimetry. Powder Technol. 1984, 38, 165–173.

2.108. Conner, W.C. Jr.; Blanco, C; Coyne, K.; Neil, J.; Mendioroz, S.; Pajares, J. Measurement of morphology of high surface area solids: Inferring pore shape characteristics. In

Characterization of Porous Solids; Unger, K.K., et al., Ed.; Elsevier Science Publishers: Amsterdam, 1988; 273–281.

2.109. Moscou, L.; Lub, S. Practical use of mercury porosimetry in the study of porous solids. Powder Technol. 1981, 29, 45–52.

2.110. Lapidus, G.R.; Lane, A.M.; Ng, K.M.; Conner, W.C. Interpretation of mercury porosimetry data using a pore-throat network model. Chem. Eng. Commun. 1985, 38, 33–56.

2.111. Conner, W.C.; Lane, A.M. Measurement of the morphology of high surface area solids: Effect of network structure on the simulation of porosimetry. J.Catal. 1984, 89, 217–225.

2.112. Van Brakel, J.; Modry, S.; Svata, M. Mercury porosimetry: State of the art. Powder Technol. 1981, 29, 1–12.

2.113. Rootare, H.M.; Nyce, A.C. The use of porosimetry in the measurement of pore size distribution in porous materials. Int. J. Powder Metall. 1971, 7(1), 3–11.

2.114. Smith, C.S.Grains, phases, and interpretation of microstructure. Trans. AIME 1948, 175 (1), 15–51.

2.115. White, J. Magnesia-based refractories. In High Temperature Oxides, Part 1: Magnesia, Lime and Chrome Refractories. Alper, A.M., Ed.; Refractory Materials: A Series of Monographs; Margrave, J.L., Ed.; Academic Press: New York, 1970; Vol. 5–1, 77–141.

2.116. Inomata, Y. Oxidation resistant Si-impregnated surface layer on reaction sintered articles. Yogyo Kyokaishi 1975, 83 (1), 1–3.

Copyright © 2004 by Marcel Dekker, Inc.

Fundamentals

119

2.117. Messier, D.R. Use of Ti to enhance wetting of reaction-bonded Si3N4 by Si. In Ceramic Engineering and Science Proceedings;

Smothers, W.J., Ed.; Am. Ceram. Soc. Westerville, OH, 1980, 1 (7–8B), 624–633.

2.118. Puyane, R.; Trojer, F. Refractory wear and wettability by glass at high temperatures. Glass 1980, 57 (12), 5–8.

2.119. Carre, A.; Roger, F.; Varinot, C. Study of acid/base properties of oxide, oxide glass, and glass-ceramic surfaces. J.Colloid Interface Sci. 1992, 154 (1), 174–183.

2.120. Gaskell, D.R. Introduction to Metallurgical Thermodynamics,

2nd Ed.; McGraw-Hill: New York, 1981.

2.121. Swalin, R.A. Thermodynamics of Solids. Wiley & Sons Inc.: New York, 1962.

2.122. Bent, H.A. The Second Law. Oxford University Press: New York, 1965.

2.123. Chase, M.W., Jr.; Davies, C.A.; Downey, J.R., Jr.; Frurip, D.J.R.; McDonald, R.A.; Syverud, A.N. J. Phys. Chem. Reference Data, Vol. 14, Suppl. No. 1, JANAF Thermochemical Tables, 3rd Ed., Parts I & II, Am. Chem. Soc. & Am. Inst. Phys., 1985.

2.124. Kubaschewski, O.; Evans, E.L.; Alcock, C.B. Metallurgical

Thermodynamics. Pergamon Press: Oxford, 1967.

2.125. Krupka, K.M.; Hemingway, B.S.; Robie, R.A.; Kerrick, D.M. High temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite. Am. Mineral. 1985, 70, 261–271.

2.126. Eriksson, G. Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium compositions in multiphase systems. Chem. Scr. 1975, 8, 100–103.

2.127. Latimer, W.M. The Oxidation States of the Elements and Their Potentials in Aqueous Solutions; Prentice-Hall: Englewood Cliffs, NJ, 1952.

2.128. Brenner, A. The Gibbs-Helmoltz equation and the EMF of galvanic cells, II. Precision of its application to concentration cells. J. Electrochem. Soc. 1975, 122 (12), 1609–1615.

Copyright © 2004 by Marcel Dekker, Inc.

120

Chapter 2

2.129. Livey, D.T.; Murray, P. The stability of refractory materials. In

Physicochemical Measurements at High Temperatures;

Bockris, J. O’M., et al., Ed.; Butterworths Scientific Publications: London, 1959; 87–116.

2.130. Luthra, K.L. Chemical interactions in ceramic and carboncarbon composites. In Materials Research Society Symposium Proceedings: Materials Stability and Environmental Degradation; Barkatt, A. Verink, E.D., Jr., Smith, L.R., Eds.; Mat. Res. Soc.: Pittsburgh, PA, 1988; Vol. 125, 53–60.

2.131. Ellingham, H.J.T. Reducibility of oxides and sulfides in metallurgical processes. J. Soc. Chem. Ind. 1944, 63, 125.

2.132. Richardson, F.D.; Jeffes, J.H.E. The thermodynamics of substances of interest in iron and steel making from 0°C to 2400°C; I Oxides. J. Iron Steel Inst. 1948, 160, 261.

2.133. Darken, L.S.; Gurry, R.W. Physical Chemistry of Metals; McGraw-Hill: New York, 1953; 348–349.

2.134. Lou, V.L.K.; Mitchell, T.E.; Heuer, A.H. Review—Graphical displays of the thermodynamics of high-temperature gassolid reactions and their application to oxidation of metals and evaporation of oxides. J. Am. Ceram. Soc. 1985, 68 (2), 49–58.

2.135. Quets, J.M.; Dresher, W.H. Thermochemistry of the hot corrosion of superalloys. J. Mater. 1969, 4 (3), 583–599.

2.136. Barret, P., Ed.; Reaction Kinetics in Heterogeneous Chemical Systems; Elsevier: Amsterdam, 1975.

2.137. Sharp, J.H.; Brindley, G.W.; Narahari Achar, B.N. Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 1966, 49 (7), 379–382.

2.138. Frade, J.R.; Cable, M. Reexamination of the basic theoretical model for the kinetics of solid-state reactions. J. Am. Ceram. Soc. 1992, 75 (7), 1949–1957.

2.139. Freeman, E.S.; Carroll, B. The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J. Phys. Chem. 1958, 62 (4), 394–397.

2.140. Sestak, J. Errors of kinetic data obtained from

Copyright © 2004 by Marcel Dekker, Inc.

Fundamentals

121

thermogravimetric curves at increasing temperature. Talanta 1966, 13 (4), 567–579.

2.141. Arnold, M.; Veress, G.E.; Paulik, J.; Paulik, F. The applicability of the Arrhenius model in thermal analysis. Anal. Chim. Acta. 1981, 124 (2), 341–350.

2.142. Sestak, J. Thermophysical Properties of Solids. Thermal Analysis; Wendlandt, W.W., Ed.; Part D; Svehla, G., Ed.;

Comprehensive Analytical Chemistry; Svehla, G., Ed.; Vol. XII; Elsevier: Amsterdam, 1984.

2.143. Holman, J.P. Heat Transfer. McGraw-Hill: New York, 1963.

2.144. Courtright, E.L. Engineering limitations of ceramic composites for high performance and high temperature applications. In Proc. 1993 Conf. on Processing, Fabrication and Applications of Advanced Composites, Long Beach, CA, Aug 9–11; Upadhya, K., Ed.; ASM: Ohio, 1993; 21–32.

2.145. Tripp, W.C.; Davis, H.H.; Graham, H.C. Effects of SiC additions on the oxidation of ZrB2. Ceram. Bull. 1973, 52 (8), 612–616.

2.146. Oishi, Y.; Kingery, W.D. Self-diffusion in single crystal and polycrystalline aluminum oxide. J. Chem. Phys. 1960, 33, 480.

2.147. Sucov, E.W. Diffusion of oxygen in vitreous silica. J. Am. Ceram. Soc. 1963, 46 (1), 14–20.

2.148. Kingery, W.D.; Pappis, J.; Doty, M.E.; Hill, D.C. Oxygen ion

mobility in cubic Zr0.85Ca0.15O1.85. J. Am. Ceram. Soc. 1959, 42 (8), 393–398.

2.149. Paladino, A.E.; Kingery, W.D. Aluminum ion diffusion in aluminum oxide. J. Chem. Phys. 1962, 37 (5), 957–962.

2.150. Rhodes, W.H.; Carter, R.E. Ionic self-diffusion in calcia stabilized zirconia, 64th Annual Mtg Abstracts. Am. Ceram. Soc. Bull. 1962, 41 (4), 283.

2.151. Lindner, R.; Parfitt, G.D. Diffusion of radioactive magnesium in magnesium oxide crystals. J. Chem. Phys. 1957, 26, 182.

2.152. Lindner, R.; Akerstrom, A. Self-diffusion and reaction in oxide and spinel systems. Z. Phys. Chem. 1956, 6, 162.

2.153. Lindner, R.; Hassenteufel, W.; Kotera, Y. Diffusion of

Copyright © 2004 by Marcel Dekker, Inc.

122

Chapter 2

radioactive lead in lead metasilicate glass. Z. Phys. Chem. 1960, 23, 408.

2.154. Shewmon, P.G. Diffusion in Solids; J.Williams Book Co.: Jenks, OK, 1983.

2.155. Crank, J. The Mathematics of Diffusion; Oxford University Press: Fair Lawn, NJ, 1956.

Copyright © 2004 by Marcel Dekker, Inc.