Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Corrosion of Ceramic and Composite Materials.pdf
Скачиваний:
173
Добавлен:
15.11.2014
Размер:
4.48 Mб
Скачать

364

Chapter 8

different liquids, and found them to increase in the order dry oil, heptane, acetonitrile, and water. The fact that crack growth in acetonotrile was greater than in heptane suggested that it was not the presence of dissolved water in the liquids but the acetonitrile molecule that led to the enhanced crack growth.

It should be obvious that stress corrosion cracking is a rather complex phenomenon, and that its evaluation is not as straightforward as it might first appear. Exactly how crack tip blunting increases strength is still unclear. Decreases in strength are generally attributed to bond rupture at the crack tip caused by the presence of water molecules; however, it has been shown that other molecules (i.e., acetonitrile) act in a similar manner. Life-time predictions are based upon the selection of the proper crack velocity equation, and it has been shown that it is best to use an equation that represents the data of several loading conditions. In addition, the equation selected most likely will not be unique to all environments.

8.4 ADDITIONAL RELATED READING

Advances in Ceramics, Fractography of Glasses and Ceramics, Varner, J.R., Frechette, V.D., Eds.; Am. Ceram. Soc., Westerville, OH, 1988; Vol. 22, 442 pp.

Ceramic Transactions, Fractography of Glasses and Ceramics II,

Frechette, V.D., Varner, J.R., Eds.; Am. Ceram. Soc., Westerville, OH, 1991; Vol. 17, 548 pp.

Fracture in Ceramic Materials, Evans A.G., Ed.; Noyes Publications, Park Ridge, NJ, 1984, 420 pp.

8.5EXERCISES, QUESTIONS, AND PROBLEMS

1.Describe stress corrosion cracking and the consequences that relate to engineering materials.

2.Describe the differences among static, dynamic, delayed, and cyclic fatigue.

Copyright © 2004 by Marcel Dekker, Inc.

Properties and Corrosion

365

3.How does stress corrosion cracking relate to the type of fatigue listed in question #2?

4.How does one determine whether to use the power law or the exponential form to represent best the static fatigue lifetimes?

5.Discuss how cracks may propagate at a stress level less than that of the critical one for crack growth?

6.Discuss the three regions of behavior related to crack velocity and applied force for glassy materials. What role does relative humidity play?

7.Explain how Si3N4 may decrease in strength (room temperature) and SiC increase in strength (room temperature) after being exposed to air art 1300°C.

8.Discuss the differences that one may find when determining strengths at temperature vs. at room temperature and why this difference occurs.

9.Is it possible for an oxidative corrosion reaction to produce zero weight gain or loss? Explain.

10.Discuss the problems that one may encounter when extrapolating data to extended lifetimes.

REFERENCES

8.1.Jakus, K.; Ritter, J.E. Jr; Sullivan, J.M. Dependency of fatigue predictions on the form of the crack velocity equation. J. Am. Ceram. Soc. 1981, 64 (6), 372–374.

8.2.Matthewson, M.J. Models for fiber reliability. Proc. Int. Symp. Fiber Optic Networks & Video Communications: Berlin, Germany, Apr., 1993.

8.3.Johnson, S.M.; Dalgleish, B.J.; Evans, A.G. High temperature failure of polycrystalline alumina: III. Failure times. J. Am. Ceram. Soc. 1984, 67 (11), 759–763.

8.4.Evans, A.G.; Blumenthal, W. High temperature failure mechanisms in ceramic polycrystals. In Deformation of Ceramics II; Tressler, R.E., Bradt, R.C. Eds.; (1984). Plenum Publishing Co.: New York, 1984; 487–505.

Copyright © 2004 by Marcel Dekker, Inc.

366

Chapter 8

8.5.Cao, H.C.; Dalgleish, B.J.; Hsueh, C-H.; Evans, A.G. Hightemperature stress corrosion cracking in ceramics. J. Am. Ceram. Soc. 1987, 70 (4), 257–264.

8.6.Lange, F.F. High-temperature strength behavior of hot-pressed Si3N4: evidence for subcritical crack growth. J. Am. Ceram. Soc. 1974, 57 (2), 84–87.

8.7.Lange, F.F. Evidence for cavitation crack growth in Si3N4. J. Am. Ceram. Soc. 1979, 62 (3–4), 222–223.

8.8.Chuang, T-J. A diffusive crack-growth model for creep fracture. J. Am. Ceram. Soc. 1982, 65 (2), 93–103.

8.9.Hillig, W.B.; Charles, R.J. Surfaces, stress-dependent surface reactions, and strength. In High Strength Materials; Zackey, V.F., Ed.; Wiley Sons: New York, 1965; 682–705. Chapter 17.

8.10.Bando, Y.; Ito, S.; Tomozawa, M. Direct observation of crack

tip geometry of SiO2 glass by high-resolution electron microscopy. J. Am. Ceram. Soc. 1984, 67 (3), C36–C37.

8.11.Ito, S.; Tomozawa, M. Crack blunting of high-silica glass. J. Am. Ceram. Soc. 1982, 65 (8), 368–371.

8.12.Charles, R.J. J. Appl. Phys. 1958, 29, 1549, 1554.

8.13.Wiederhorn, S.M. Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 1967, 50 (8), 407–414.

8.14.Wiederhorn, S.M.; Bolz, L.H. Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 1970, 53 (10), 543–548.

8.15.Wiederhorn, S.M.; Johnson, H. Effect of electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 1973, 56 (4), 192–197.

8.16.Wiederhorn, S.M. A chemical interpretation of static fatigue. J. Am. Ceram. Soc. 1972, 55 (2), 81–85.

8.17.Simmons, C.J.; Freiman, S.W. Effect of corrosion processes on subcritical crack growth in glass. J. Am. Ceram. Soc. 1981, 64 (11), 683–686.

8.18.Wiederhorn, S.M.; Freiman, S.W.; Fuller, E.R. Jr.; Simmons, C.J. Effect of water and other dielectrics on crack growth. J. Mater. Sci. 1982, 17 (12), 3460–3478.

Copyright © 2004 by Marcel Dekker, Inc.

Properties and Corrosion

367

8.19.Freiman, S.W. Effect of alcohols on crack propagation in glass. J. Am. Ceram. Soc. 1974, 57 (8), 350–353.

8.20.Michalske, T.A.; Bunker, B.C. Steric effects in stress corrosion fracture of glass. J. Am. Ceram. Soc. 1987, 70 (10), 780– 784.

8.21.Michalske, T.A.; Freiman, S.W. A molecular mechanism for stress corrosion in vitreous silica. J. Am. Ceram. Soc. 1983, 66 (4), 284–288.

8.22.Freiman, S.W.; White, G.S.; Fuller, E.R., Jr. Environmentally enhanced crack growth in soda-lime glass. J. Am. Ceram. Soc. 1985, 68 (3), 108–112.

8.23.Michalske, T.A.; Bunker, B.C.; Freiman, S.W. Stress corrosion of ionic and mixed ionic/covalent solids. J. Am. Ceram. Soc. 1986, 69 (10), 721–724.

8.24.White, G.S.; Freiman, S.W.; Wiederhorn, S.M.; Coyle, T.D. Effects of counterions on crack growth in vitreous silica. J. Am. Ceram. Soc. 1987, 70 (12), 891–895.

8.25.Gy, Rene Stress corrosion of silicate glass: a review. J. NonCryst. Solids 2003, 316, 1–11.

8.26.McCullum, D.E.; Hecht, N.L.; Chuck, L.; Goodrich, S.M. Summary of results of the effects of environments on mechanical behavior of high-performance ceramics. Ceram. Eng. Sci. Proc. 1991, 12 (9,10), 1886–1913.

8.27.Hench, L.L.; Ohuchi, F.; Freiman, S.W.; Wu, C.Cm.;

McKinney, K.R. Infrared reflection analysis of Si3N4 oxidation. Ceramic Engineering and Science Proceedings, 1980; Vol. 1 (7–8A), 318–330.

8.28.Easler, T.E.; Bradt, R.C.; Tressler, R.E. Effects of oxidation and oxidation under load on strength distributions of Si3N4. J. Am. Ceram. Soc. 1982, 65 (6), 317–320.

8.29.Govila, R.K.; Mangels, J.A.; Baer, J.R. Fracture of yttriadoped, sintered reaction-bonded silicon nitride. J. Am. Ceram. Soc. 1985, 68 (7), 413–418.

8.30.Kim, H-E.; Moorhead, A.J. High-temperature gaseous corrosion of Si3N4 in H2–H2O and Ar–O2 environments. J. Am. Ceram. Soc. 1990, 73 (10), 3007–3014.

Copyright © 2004 by Marcel Dekker, Inc.

368

Chapter 8

8.31.Wang, L.; He, C.; Wu, J.G. Oxidation of sintered silicon nitride materials. In Proceedings of the 3rd International Symposium on Ceramic Materials and Components for Engines; Tennery, V.J., Ed.; Am. Ceram. Soc.: Westerville, OH, 1989; 604–611.

8.32.Lange, F.F.; Davis, B.I. Development of surface stresses during the oxidation of several Si3N4/CeO2 materials. J. Am. Ceram. Soc. 1979, 62 (11–12), 629–630.

8.33.O’Brien, M.H.; Huang, C.M.; Coon, D.N. Oxidation and retained strength of in-situ O’–β’ SiAlON composites. Ceram. Eng. Sci. Proc. 1993, 14 (7–8), 350–357. Part 1.

8.34.Clausen, N.; Wagner, R.; Gauckler, L.J.; Petzow, G. Nitridestabilized cubic ZrO2. Presented at the 79th Annual Mtg. Am. Ceram. Soc., Chicago, Apr 23, 1977; Am. Ceram. Soc. Bull [abstr]. 1977; 56 (3), 301. Paper no. 136-B-77.

8.35.Lange, F.F. Compressive surface stresses developed in ceramics by an oxidation-induced phase change. J. Am. Ceram. Soc. 1980, 63 (1–2), 38–40.

8.36.Kawakubo, T.; Komeya, K. Static and cyclic fatigue behavior of a sintered silicon nitride at room temperature. J. Am. Ceram. Soc. 1987, 70 (6), 400–405.

8.37.Fett, T.; Himsolt, G.; Munz, D. Cyclic fatigue of hot-pressed Si3N4 at high temperatures. Adv. Ceram. Mater. 1986, 1 (2), 179–184.

8.38.Tajima, Y.; Urashima, K.; Watanabe, M.; Matsuo, Y. Static, cyclic and dynamic fatigue behavior of silicon nitride. In

Proceedings of the 3rd International Symposium on Ceramic Materials and Components for Engines; Tennery, V.J., Ed.; Am. Ceram. Soc.: Westerville, OH, 1989; 719–728.

8.39.Clark, T.J. Fracture properties of thermally aged ceramic fiber produced by polymer pyrolysis. In Advances in Ceramics, Fractography of Glasses and Ceramics; Varner, J.R., Frechette, V.D., Eds.; Am. Ceram. Soc.: Westerville, OH, 1988; Vol. 22, 279–293.

8.40.Butt, D.P.; Tressler, R.E.; Spear, K.E. Silicon carbide materials in metallurgical heat-treatment environments. Am. Ceram. Soc. Bull. 1992, 71 (11), 1683–1690.

8.41.Li, C-T.; Langley, N.R. Development of a fractographic method for the study of high-temperature failure of ceramic

Copyright © 2004 by Marcel Dekker, Inc.

Properties and Corrosion

369

fibers. In Advances in Ceramics, Fractography of Glasses and Ceramics; Varner, J.R. Frechette, V.D., Eds.; Am. Ceram. Soc.: Westerville, OH, 1988; Vol. 22, 177–184.

8.42.Brinkman, C.R.; Begun, G.M.; Cavin, O.B.; Foster, B.E.; Graves, R.L.; Kahl, W.K.; Liu, K.C.; Simpson, W.A. Influence of diesel engine combustion on the rupture strength of partially stabilized zirconia. In Proceedings of the 3rd International Symposium on Ceramic Materials and Components for Engines; Tennery, V.J Ed.; Am. Ceram. Soc.: Westerville, OH, 1989; 549–558.

8.43.Butt, D.P.; Mecholsky, J.J. Effects of sodium silicate exposure at high temperature on sintered α-silicon carbide and siliconized silicon carbide. J. Am. Ceram. Soc. 1989, 72 (9), 1628–1635.

8.44.Bourne, W.C.; Tressler, R.E. Molten salt degradation of Si3N4 ceramics. Ceram. Bull. 1980, 59 (4), 443–446, 452.

8.45.Tressler, R.E.; Meiser, M.D.; Yonushonis, T. Molten salt corrosion of SiC and Si3N4 ceramics. J. Am. Ceram. Soc. 1976, 59 (5–6), 278–279.

8.46.Swab, J.J.; Leatherman, G.L. Static-fatigue life of Ce-TZP and Si3N4 in a corrosive environment. J. Am. Ceram. Soc. 1992, 75 (3), 719–721.

8.47.Leatherman, G.L.; Katz, R.N.; Bartowski, G.; Chadwick, T.; King, D. The effect of sodium sulfate on the room temperature strength of a yttria containing silicon nitride. Ceram. Eng. Sci. Proc. 1993, 14 (7–8), 341–349.

8.48.Fox, D.S.; Smialek, J.L. Burner rig hot corrosion of silicon carbide and silicon nitride. J. Am. Ceram. Soc. 1990, 73 (2), 303–311.

8.49.Smialek, J.L.; Jacobson, N.S. Mechanism of strength degradation for hot corrosion of α-SiC. J. Am. Ceram. Soc. 1986, 69 (10), 741–752.

8.50.Jacobson, N.S.; Smialek, J.L. Corrosion pitting of SiC by molten salts. J. Electrochem. Soc. 1986, 133 (12), 2615– 2621.

8.51.Cree, J.W.; Amateau, M.F. Degradation of silicon carbide by molten lithium. J. Am. Ceram. Soc. 1987, 70 (11), C318C321.

Copyright © 2004 by Marcel Dekker, Inc.

370

Chapter 8

8.52.Frakes, J.T.; Brown, S.D.; Kenner, G.H. Delayed failure and aging of porous alumina in water and physiological media. Am. Ceram. Soc. Bull. 1974, 53 (2), 183–187.

8.53.Seidelmann, U.; Richter, H.; Sotesz, U. Failure of ceramic hip endoprostheses by slow crack growth-lifetime prediction. J. Biomed. Mater. Res. 1982, 16, 705–713.

8.54.Ritter, J.E. Jr; Greenspan, D.C.; Palmer, R.A.; Hench, L.L. Use of fracture mechanics theory in lifetime predictions for alumina and bioglass-coated alumina. J.Biomed. Mater. Res. 1979, 13, 251–263.

8.55.Barry, C.; Nicholson, P.S. Stress corrosion cracking of a bioactive glass. Ad. Ceram. Mater. 1988, 3 (2), 127–130.

8.56.Troczynski, T.B.; Nicholson, P.S. Stress corrosion cracking of bioactive glass composites. J. Am. Ceram. Soc. 1990, 73 (1), 164–166.

8.57.Sato, T.; Tokunaga, Y.; Endo, T.; Shimada, M.; Komeya, K.; Komatsu, M.; Kameda, T. Corrosion of silicon nitride ceramics in aqueous hydrogen chloride solutions. J. Am. Ceram. Soc. 1988, 71 (12), 1074–1079.

8.58.Dabbs, T.P.; Lawn, B.R. Strength and fatigue properties of optical glass fibers containing microindentation flaws. J. Am. Ceram. Soc. 1985, 68 (11), 563–569.

8.59.Lawn, B.R.; Evans, A.G. A model for crack initiation in elastic/ plastic indentation fields. J. Mater. Sci. 1977, 12 (11), 2195– 2199.

8.60.Lawn, B.R.; Dabbs, T.P.; Fairbanks, C.J. Kinetics of shearactivated indentation crack initiation in soda-lime glass. J. Mater. Sci. 1983, 18 (9), 2785–2797.

8.61.Matthewson, M.J.; Kurkjian, C.R. Environmental effects on the static fatigue of silica optical fiber. J. Am. Ceram. Soc. 1988, 71 (3), 177–183.

8.62.Krause, J.T. Zero stress strength reduction and transitions in static fatigue of fused silica fiber lightguides. J. Non-Cryst. Solids 1980, 38–39, 497–502.

8.63.Matthewson, M.J.; Rondinella, V.V.; Kurkjian, C.R. The influence of solubility on the reliability of optical fiber. Optical Materials Reliability and Testing, SPIE 1992, 1791, 52–60.

Copyright © 2004 by Marcel Dekker, Inc.

Properties and Corrosion

371

8.64.Matthewson, M.J.; Yuce, H.H. Kinetics of degradation during aging and fatigue of fused silica optical fiber. In Fiber Optics Materials and Components; Proc. SPIE 1994, 2290, 204– 210.

8.65.Iler, R.K. The Chemistry of Silica; Wiley & Sons: New York, 1979; 3–115.

8.66.Hirao, K.; Tomozawa, M. Kinetics of crack tip blunting of glasses. J. Am. Ceram. Soc. 1987, 70 (1), 43–48.

8.67.Marshall, D.B.; Lawn, B.R. Residual stresses in dynamic fatigue of abraded glass. J. Am. Ceram. Soc. 1981, 64 (1), C6-C7.

8.68.Freiman, S.W.; Baker, T.L. Effects of composition and environment on the fracture of fluoride glasses. J. Am. Ceram. Soc. 1988, 71 (4), C214-C216.

Copyright © 2004 by Marcel Dekker, Inc.