Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по надежности (2).doc
Скачиваний:
494
Добавлен:
10.02.2015
Размер:
1.24 Mб
Скачать

Лекция 1. Декомпозиция технологических систем

1.1. Понятие системы

1.2. Классификация систем

1.3. Технологические системы и их элементы

1.4. Состояния и события технической системы

Система, связи, отношения, организация, состояние, поведение, равновесие, устойчивость, развитие, естественные, идеальные, искусственные, казуальные, целенаправленные, технологические, восстанавливаемые, невосстанавливаемые системы, средства технологического оснащения, дополняющее технологическое оборудование, работоспособность, исправность, предельное состояние, отказ, неисправность

1.1. Понятие системы

Развитие науки неизбежно приводит к появлению новых областей знаний. Их зарождение вызывается двумя факторами:

- фактором обособления;

- фактором обобщения.

Обособление приводит к возникновению специфических научных направлений глубокого проникновения в узкий класс объектов. Обобщающие науки занимаются изучением закономерностей явлений, протекающих в широком классе объектов. К числу именно таких наук относятся науки о системах. Системность является всеобщим свойством материи. Оно проявляется в познавательной и практической деятельности, в окружающей природе, что отражено на рисунке 1.

Системность познавательной деятельности это синтез, анализ, системный подход. Практической – целенаправленность и алгоритмичность. Системность окружающей природы это системность собственно природы, общества и взаимодействия человека с природой. Частными проявлениями системности выступают время, пространство, движение.

Рисунок 1. Системность как всеобщее свойство материи

Система (греческ.) – целое, состоящее из частей, соединение.

Система – множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство. Всякая система состоит из элементов, каждый из которых может рассматриваться как подсистема. Каждая подсистема есть система более низкого иерархического уровня. Имеет место следующая иерархия систем: мега, мета, мезо, макро, микро, нано системы. Чтобы считаться системой объект должен обладать следующими четырьмя свойствами:

- целостностью и членимостью;

- связями и отношениями;

- организацией;

- интегративными качествами.

Первое свойство означает, что систему образует объект как единое целое, состоящее из взаимодействующих частей, может быть даже разнокачественных, но одновременно совместимых. Целостность обусловливается тем, что изменение любого компонента (подсистемы, элемента) оказывает воздействие на другие компоненты и, как следствие, на всю систему в целом. В свою очередь любое изменение системы в ее регулировании, управлении или другом неизбежно отзывается на составляющих.

Наличие связей и отношений отличает систему от конгломерата и выделяет в виде целого. Связь, по сути, физический канал, по которому обеспечивается обмен между элементами и с окружающей средой веществом, энергией и информацией. Отношения те же связи, но в абстрактной форме как отображение реальных связей.

Свойство организации проявляется в снижении степени неопределенности системы по сравнению со степенью неопределенности факторов, определяющих саму возможность создания системы. Возникновение организации в системе есть упорядоченное распределение элементов и связей в пространстве и времени.

Интегративные качества проявляются в том, что существуют такие качества, которые присущи системе в целом, но не свойственны ни одному элементу в отдельности. Т.е. целое не равно сумме частей. Единство обеспечивается взаимодействием (эффект синергии).