Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ 1-21 23-54.rtf
Скачиваний:
11
Добавлен:
11.02.2015
Размер:
612.85 Кб
Скачать

Вопрос 21 Активные электромагнитные и полезные мощности двигателя. Потери энергии и кпд двигателя

Преобразование энергии в асинхронном двигателе, как и в других электрических машинах, связано с потерями энергии. Эти потери делятся на механические, магнитные и электрические.

Из сети в обмотку статора поступает мощность Р1. Часть этой мощности расходуется на покрытие магнитных потерь в сердечнике статора рс1, а также в обмотке статора на покрытие электрических потерь, обусловленных нагревом обмотки,

Оставшаяся часть мощности при помощи магнитного потока передается на ротор и поэтому называется электромагнитной мощностью Часть электромагнитной мощности затрачивается на покрытиеэлектрических потерь в обмотке ротора

мощность электрических потерь в роторе пропорциональна скольжению. Поэтому работа асинхронного двигателя более экономична при малых скольжениях.

Механические потери в асинхронном двигателе обусловлены трением в подшипниках и трением вращающихся частей о воздух. Добавочные потери вызваны наличием в двигателе полей рассеяния и пульсацией поля в зубцах ротора и статора.

Таким образом, полезная мощность асинхронного двигателяР2 = Р1 - ∑р, где ∑р – сумма потерь в асинхронном двигателе, ∑р = рс1 + рэ1 + рэ2+ рмех + рд.

Коэффициент полезного действия асинхронного двигателяη = Р2/ Р1 = 1 - ∑р/ Р1.

Благодаря отсутствию коллектора КПД асинхронных двигателей выше, чем у двигателей постоянного тока. В зависимости от величины мощности асинхронных двигателей их КПД при номинальной нагрузке может быть в пределах от 83 до 95% (верхний предел соответствует двигателям большой мощности).

24. ПОТЕРИ  МОЩНОСТИ   И  КПД МАШИН ПОСТОЯННОГО ТОКА

Преобразование электрической энергии в механическую с помощью двигателей и механической в электрическую с помощью генераторов сопровождается потерями энергии, чему соответствуют определенные потери мощности. От значений потерь мощности зависит важнейший энергетический показатель машин постоянного тока — их КПД. Потери мощности в машинах приводят к их нагреванию.

В машинах постоянного тока различают следующие основные виды потерь мощности:

1. Потери мощности в сопротивлениях цепи якоря: ΔРя = Iя2rя. Как видно, потери мощности ΔРя зависят от нагрузки машины. Поэтому их называют переменными потерями мощности.

2. Потери мощности в стали ΔРc, вызванные главным образом вихревыми токами и перемагничиванием магнитопровода якоря при его вращении. Частично эти потери возникают из-за вихревых токов в поверхностном слое полюсных наконечников, вызванных пульсацией магнитного потока при вращении якоря.

3. Механические потери мощности ΔРмех , причиной которых является трение в подшипниках, щеток о коллектор, вращающихся частей о воздух.

4. Потери мощности в цепи параллельной или независимой обмотки возбуждения: ΔРв = UвIв = Iв2rв.

Потери ΔРс, ΔРмех , ΔРв при изменении нагрузки машин меняются незначительно, вследствие чего их называют постоянными потерями мощности.

КПД машин постоянного тока

η = P2/P1,

где Р2 — полезная мощность машины (у генератора — это электрическая мощность, отдаваемая приемнику, у двигателя — механическая мощность на валу); Р1 — подводимая к машине мощность (у генератора — это механическая мощность, сообщаемая ему первичным двигателем, у двигателя — мощность, потребляемая им от источника постоянного тока; если генератор имеет независимое возбуждение, то P1 включает в себя также мощность, необходимую для питания цепи обмотки возбуждения).

Очевидно, мощность Р1 может быть выражена следующим образом: Р1 = Р2 ΣΔP,

где   ΔP — сумма   перечисленных   выше потерь мощности.

С учетом последнею выражения

η = P2/(P2 + ΣΔP).

Когда машина работает вхолостую, полезная мощность Р2 равна нулю и η = 0. Характер изменения КПД при увеличении полезной мощности зависит от значения и характера изменения потерь мощности. Примерный график зависимости η (Р2) приведен на рис. 9.36.

При увеличении полезной мощности КПД сначала возрастает при некотором значении Р2, достигает наибольшего значения, а затем уменьшается. Последнее объясняется значительным увеличением переменных потерь, пропорциональных квадрату тока. Машины рассчитывают обычно таким образом, чтобы наибольшее значение КПД находилось в области, близкой к номинальной мощности Р2ном . Номинальное значение КПД машин мощностью от 1 до 100 кВт лежит примерно в пределах от 0,74 до 0,92 соответственно.

24. Как работает двигатель внутреннего сгорания.

Двигатель внутреннего сгорания (ДВС) - на сегодняшний день самый распространенный тип двигателя. Перечень транспортных средств, в которые он устанавливается просто огромен. ДВС можно обнаружить на автомобилях, вертолетах, танках, тракторах, катерах и т. д. Двигатель внутреннего сгорания - это тепловой двигатель, в котором происходит преобразование части химической энергии сгорающего топлива в механическую энергию. Существенное разделение двигателей на категории это деление по рабочему циклу на 2-х и 4-х тактные; по способу приготовления горючей смеси — с внешним (в частности карбюраторные) и внутренним (например дизели) смесеобразованием; по виду преобразователя энергии ДВС делятся на поршневые, турбинные, реактивные и комбинированные.

Коэффициент полезного действия двигателя внутреннего сгорания - 0,4-0,5. Первый двс сконструирован Э. Ленуаром в 1860. Мы рассмотрим в данной статье наиболее часто применяемый в автомобилестроении четырехтактный двигатель внутреннего сгорания.

Впервые четырехтактный двигатель был представлен Николаусом Отто в 1876 году и поэтому он также носит название двигателя с циклом Отто. Более грамотное название такого цикла - четырехтактный цикл. В настоящее время это наиболее распространенный вид двигателя для автомобилей.

Принцип работы двигателя внутреннего сгорания (ДВС)

Действие поршневого двигателя внутреннего сгорания основано на использовании давления теплового расширения нагретых газов во время движения поршня. Нагревание газов происходит в результате сгорания в цилиндре топливо-воздушной смеси. Для повторения цикла отработанную газовую смесь нужно выпустить в конце движения поршня и заполнить новой порцией топлива и воздуха. В крайнем положении происходит поджиг топлива от искры свечи. Впуск и выпуск топлива и продуктов сгорания происходят через клапана, управляемые механизмом газораспределения и системой подачи топлива. Таким образом, цикл работы двигателя делится на следующие этапы:

Такт впуска. Такт сжатия. Такт расширения, или рабочий ход. Такт выпуска.

Усилие от двигающегося поршня цилиндра через коленчатый вал преобразуется во вращательное движение вала двигателя. Часть энергии вращения расходуется на возвращения поршней в исходное состояние, для совершения нового цикла. Конструкция вала определяет различное положение поршней в разных цилиндрах в каждый конкретный момент времени. Таким образом чем больше в двигателе цилиндров, тем, в общем случае, равномернее вращение его вала.

По расположению цилиндров двигатели делятся на несколько типов:

а) Двигатели с вертикльным или наклонным расположением цилиндров в один ряд

б) V-образные с взаимным расположением цилиндров под углом в форме латинской буквы V:

d) Двигатели с противолежащими цилиндрами. Он носит название "оппозитный", цилиндры в нем расположены под углом 180 градусов:

Механизм газораспределения двигателя на такте выпуска обеспечивает очистку цилиндров от продуктов сгорания (отработавших газов) и наполнение цилиндров новой порцией топливно-воздушной смеси на такте впуска.

Система зажигания производит высоковольтный разряд и передает его свече цилиндра через высоковольтный провод. Управление поджигом осуществляет трамблер, провода от которого подходят к каждой свече. Трамблер устроен таким образом, чтобы разряд возникал именно в том цилиндре, где поршень в данный момент проходит точку наибольшего сжатия топливной смеси. Если смесь воспламенится раньше, то давление газа сработает против его хода, если позже - мощность выделяемая расширением газов будет использована не полностью.

Для запуска двигателя, ему необходимо придать начальное движение. Для этого используется система старта (см. статью "как работает стартер") от электрического двигателя - стартера.

Преимущества бензиновых двигателей

Более низкий уровень шума и вибраций по сравнению с дизелем;

Большая мощность при равном объеме двигателя;

Возможность работы на высоких оборотах, без серьезных последствий для двигателя.

Недостатки бензиновых двигателей

Больший чем у дизеля расход топлива, и более высокие требования к его качеству;

Необходимость наличия и постоянной работы системы зажигания топлива;

Наибольшая мощность бензиновых ДВС достигается в узком диапазоне оборотов.

25. Способы возбуждения машин постоянного тока и их классификация

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток. Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя, преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Схемы генераторов постоянного тока

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У генератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря Iя равен сумме токов нагрузки Iп и тока возбуждения Iв: Iя = Iп + Iв

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением. У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Схема двигателя с параллельным возбуждением

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря Iя и тока возбуждения Iв.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.

26. Устройство трехфазных синхронных двигателей с электромагнитнным возбуждением и принцип действия\

Синхронная машина состоит из двух основных частей: неподвижной - статора и вращающейся - ротора, и имеет две основные обмотки. Одна обмотка подключается к источнику постоянного тока. Протекающий по этой обмотке ток создает основное магнитное поле машины. Эта обмотка располагается на полюсах и называется обмоткой возбуждения. Иногда у машин небольшой мощности обмотка возбуждения отсутствует, а магнитное поле создается постоянными магнитами. Другая обмотка является обмоткой якоря. В ней индуктируется основная ЭДС машины. Она укладывается в пазы якоря и состоит из одной, двух или трех обмоток фаз. Наибольшее распространение в синхронных машинах нашли трехфазные обмотки якоря.Обмотка статора подключается к трехфазной сети переменного тока с частотой f и обмотка создает магнитное поле ω1, вращающееся с угловой скоростью ω1=2πf/РМ (рис.3.2, а). Индуктор создает постоянный поток возбуждения Ф0. При вращении ротора с постоянной скоростью ω2=ω1 поля статора и ротора неподвижны друг относительно друга и в результате их взаимодействия создается электромагнитный момент Mэм. Если ротор отстает по углу от поля статора, то момент направлен в сторону вращения ротора (является вращающим) и с вала двигателя снимается механическая энергия.Более наглядно процесс возникновения электромагнитного момента можно рассмотреть на статической модели (рис.3.2, б, в), в которой статор и ротор заменены неподвижными постоянными магнитами. В положении, изображенном на рис.3.2,б, угол между полями статора и ротоpa равен нулю, силы притяжения разноименных полюсов статора и ротора Fэм не имеют тангенциальной составляющей и Mэм=0. Ротор находится в положении устойчивого равновесия. Повернем ротор относительно полюсов статора на угол γ (рис. 3.2, в). У сил притяжения Fэм появляются тангенциальные составляющие Ft ,и создается момент Мэм, стремящийся вернуть ротор в исходное положение. Нетрудно заметить, что максимальное значение момента будет при γ = 90°. При γ= 180° момент Мэм снова равен нулю, но это положение неустойчивого равновесия ротора, т.к. между одноименными полюсами статора и ротора действуют силы отталкивания. Достаточно малейшего отклонения угла γ от 180° и эти силы вернут ротор в положение γ = 0 (понятия положений устойчивого и неустойчивого положений ротора соответствуют аналогичным понятиям у обычного физического маятника). Следовательно, в первом приближении можно считать, что в синхронном двигателе с электромагнитным возбуждением электромагнитный момент изменяется по закону Мэм=Ммaxsin γ. Этот момент Мэм часто называют синхронизирующим. При числе пар полюсов рм> I вместо угла γ должен быть взят электрический угол γэ= рм γ. В соответствии с уравнением равновесия моментов в установившемся режиме Мэм= Мст= М0+Мн. Значит, чем больше момент нагрузки Мн на валу двигателя, тем на больший угол отстает ротор от поля статора. Значение момента сопротивления Мст не должно превышать Ммax, т.к. в противном случае равновесие моментов не устанавливается при любых значенияхγ в диапазоне от 0° до 360° и ротор выходит из синхронизма – начинает отставать от поля статора по угловой скорости. Поэтому Ммax называют моментом выхода из синхронизма. Практически рабочий диапазон моментов выбирается таким образом, чтобы γ не превышал 20° –30°

27. Классификация трансформаторов.Устройство и принцип действия

это электромагнитный статический преобразователь электроэнергии. Основное назначение трансформатора изменять напряжение переменного тока, но может применяться как числа фаз. Наиболее применяются силовые трансформаторы. Работа тран-ра осн-на на явл ЭМИ в тран-ре. ЭДС в обмотках индуцируется пульсирующим магнитным потоком по закону Ленца: е=-dψ/dt, ψ=ωФ. ЭДС наведенная в контуре по з-ну Ленца пропорционально скорости изменения магнитного потока: е=- ωdФ/dt. Но с другой стороны ψ=Li => е= -Ldi/dt – это выр-е применимо только если в катушке отсутствует феромагнитный сердечник. Простейший трансформатор имеет как минимум 2 обмотки

Обмотка к которой подвод-ся эл энергия U источника назыв 1-ой. Обмотка от которой энергия отвод-ся к приемнику назыв 2-ой. Магнитопровод в тран-ре служит для усиления магнитной связи между обмотками и яв-ся также основанием для крепления и установки обмоток. По констр-ии магн-од бывает:

торроидальный броневой бронестержневой Стержневой

Трансформаторы малой мощности часто имеют броневую конструкцию. Они собираются из стали Ш – образной формы. Сборка магнитопровода бывает: в стык, в нахлест. В нахлест – более хорошие магн-ые хар-ки но усложняется сборка и разборка. Форма поперечного сечения магнитопровода зависит от мощности трансформатора. При малой мощности – прямоугольная форма. Для тран-ра большой мощности в магнитопроводе выполн-ся вентиляционные каналы. Магнитопровод изготовл спец. стали ( катаная или текстурованная). У этой стали в направлении прокатки улучшены магнит. характ-ки. Обмотки транфор-ра бывают цилиндрические, дисковые. У дисковой обмотки снижаются потери на магн. рассеивания но затраты по изготовл. возрастает. Особое влияние при изготовл. тран-ра удел-ся изоляции и охлаждению. Изоляция бывает главная (изоляция между стержнем и обмоткой и между обмотками), продольная (между слоями одной и той же обмотки). Охлаждение бывает воздушное или масляное. В зависимости от кол-ва обмоток тран-ра бывают: 2-х обмоточные, 3-х обмоточные, много обмоточеные. Трансформаторы бывают понижающие и повышающие. Транс-ры бывают: силовые, трансформаторы спец. наз-я ( сварочные), измерительные ( тока, напр-я), испытательные ( для получ-я высоких и свер высоких напр), разнотрансфор-ые ( для устр-в техники и автоматики). Так же классифиц. по числу фаз: о-однофаз тр, Т-3-х фазный тр, С-сухой тр, Н – с рег напр-ем, У- герметезир тр, М- масленый тр. Sн- ном. мощ тр-ра.

8. Работа трансформатора в режиме нагрузки. Трёхфазные трансформаторы. Автотрансформаторы. Измерительные трансформаторы тока и напряжения.

Трансформатор напряжения – это устройство, в котором на сердечник намотаны две обмотки. Первая (первичная) подключается к источнику энергии с напряжением, а ко второй (вторичной) подсоединяется потребитель с напряжением. Кстати, сердечник трансформатора собран из пластин электротехнической высококачественной стали.

В процессе протекания тока от источника энергии по первичной обмотке в сердечнике возникает переменный магнитный поток, который создает во вторичной обмотке электродвижущую силу.

Обмотка с более высоким напряжением имеет большее число витков, а потому изготавливается из провода меньшего сечения. Обмотка с низким напряжением, наоборот, имеет меньшее число витков, а ее провод обладает большей площадью сечения. Существует также такой параметр, как угловая погрешность трансформатора. Для ее уменьшения принято уменьшать число витков первичной обмотки, а для компенсации нужно применять специальные компенсирующие обмотки.

Итак, трехфазный трансформатор (рис. 8.17, д) имеет один трехстержневой магнитопровод с двумя обмотками на каждом из стержней. Каждая фаза трехстержневого трансформатора представляет собой по существу однофазный трансформатор. Поэтому анализ работы и расчет трехфазных трансформаторов при равномерной нагрузке каждой фазы аналогичны однофазным и схема замещения изображается для одной фазы.

Начала и концы первичных обмоток обозначаются большими буквами — соответственно АХ, BY, CZ, вторичных обмоток — малыми буквами ах, by, cz. Фазы вторичных обмоток, так же как и первичных, могут быть соединены звездой или треугольником.А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

• Измерительный трансформатор – трансформатор, служащий для передачи информационного сигнала измерительным приборам, приборам учёта, применяются для расширения их пределов измерения.

Измерительные трансформаторы можно разделить на трансформаторы напряжения (1) и трансформаторы тока (2):

Трансформатор напряжения предназначен для измерения напряжения и представляет собой обычный трансформатор с первичной обмоткойвключенной в электрическую сеть, а во вторичную обмотку параллельно включаетсявольтметр, счётчик и т. д.

Трансформатор тока предназначен для преобразования переменного тока большой силы в ток малой силы  (обычно, пропорционального уменьшения), расширяя тем самым пределы измерения ваттметра, счётчика или амперметра, первичная обмотка которого подключается последовательно с нагрузкой, а вторичная обмотка замкнута на измерительный прибор – амперметр, счетчик и т. д.

 • Изолятор – электротехническое устройство, компонент, выполненный из диэлектрического материала и предназначенный для электрической изоляции и механического крепления электроустановок или их отдельных частей электрооборудования, имеющих разные электрические потенциалы. • Изоляция – диэлектрический материал, препятствующий прохождению тока проводимости. • Изоляция кабеля, провода – диэлектрические материалы, включаемые в кабель или провод в целях обеспечения электрической прочности.

29. Рубильники и переключатели, контроллёры, пакетные выключатели и переключатели,контакторы.

Рубильник предназначен для ручного включения и отключения электрических цепей с постоянным напряжением до 440 и переменным до 500 В.Переключатель в отличие от рубильника имеет две системы неподвижных контактов и три коммутационных положения. В среднем положении ножей цепи разомкнуты. Специальное устройство фиксирует ножи в этом положении.Пакетные выключатели и переключатели являются малогабаритными коммутационными аппаратами с ручным приводом, которые служат для одновременного управления большим числом цепей. Пакетные выключатели и переключатели используются для нечастых коммутаций в цепях с небольшой мощностью (токи до 400 А, постоянное напряжение 220 и переменное 380В). Пакетные переключатели и выключатели применяются как аппараты распредустройства и в цепях автоматики. Они используются также для пуска и реверса двигателей, а также для переключения схемы соединения обмоток двигателя со звезды на треугольник.В трехфазном рубильнике с центральной рукояткой (рис. 15.1) подвижный контакт — нож / вращается в шарнирной стойке 2. При размыкании цепи между ножом и неподвижным контактом стойки 3 загорается дуга. Гашение дуги постоянного тока при токе до 75 А происходит за счет механического удлинения дуги двигающимся ножом. Чем больше скорость движения контакта, тем больше скорость растяжения дуги и меньше время ее горения. При отключении больших токов решающим фактором является электродинамическая сила. Эта сила, действующая на единицу длины дуги, примерно обратно пропорциональна длине ножа. Для безопасности ремонта расстояние между контактными стойками 3 делается не менее 0,05 м. На процесс гашения дуги влияют также тепловые потоки воздуха, создаваемые дугой. Дуга гасится более интенсивно, если ее растяжение за счет конвективного движения воздуха совпадает с направлением действия электродинамических сил (рубильник устанавливается так, что кривизна дуги обращена вверх).При отключении переменного тока дуга гасится за счет возникновения электрической прочности 200—220 В около каждого катода рубильника (§ 4.7). В однофазной цепи двухполюсный рубильник позволяет легко гасить дугу с номинальным током при напряжении до 380 В.

Однополюсный рубильник с одним разрывом надежно работает в цепи с напряжением до 220 В. Рубильники и переключатели с центральной рукояткой (рис. 15.1) разрешается применять только для отключения обесточенной цепи. При отключении цепей под нагрузкой дуга не должна воздействовать на руку (рукоятка находится сбоку или применяется рычажный привод, см. рис. 15.2). Как правило, наиболее тяжело отключаемый ток (критическое значение) меньше его номинального значения.Для рубильников и переключателей с боковой рукояткой или рычажным приводом отношение отключаемого тока к номинальному составляет 0,2 при постоянном напряжении 220 В и 0,3 при переменном напряжении 380 В. При постоянном напряжении 440 и переменном 500 В указанные аппараты используются только для отключения обесточенных цепей. Для увеличения отключающей способности рубильник снабжается дугогасительной решеткой. 

При этом отключающая способность рубильников увеличивается до 0,5 /Ном при постоянном напряжении 440 и переменном 500 В, и до /ном в цепях с постоянным напряжением 220 и переменным 380 В.

 КОНТАКТОРЫ И КОНТРОЛЛЕРЫ

Для дистанционного и автоматического управления электродвигателями применяют контакторы. В зависимости от рода тока контакторы бываю постоянного и переменного тока.

В контакторе постоянного тока силовая цепь, замыкаемая контактором, проходит через контакты, укрепленные на изолирующем основании, контакты самого контактора и гибкую токоведущую связь. Замыкание контактора осуществляется электромагнитом, обмотка которого питается от вспомогательной цепи управления. При замыкании цепи управления электромагнит притягивает якорь, который замыкает контакты контактора.

Контактор удерживается во включенном положении до тех пор, пока замкнута цепь обмотки электромагнита. Контакторы постоянного тока КП строятся с одним, двумя и тремя главными контактами, работающими в цепях постоянного тока напряжением 220, 440 и 600 В. Номинальные токи, на которые рассчитаны главные контакты, бывают от 20 до 250 А. Катушка электромагнитов контакторов КП рассчитаны на напряжения 48, 110 и 220 В.

Кроме главных контактов, служащих для замыкания и размыкания силовых цепей, контакторы снабжаются блок-контактами для цепей сигнализации и других целей. Контакторы КП допускают до 240-1200 включений в час.

Включающие катушки контакторов переменного тока изготовляются на напряжения 127, 220, 380 и 500 В при частоте 50 Гц. Данные контакторы допускают до 120 включений в час.

Для пуска двигателей, изменения направления вращения, регулирования скорости и остановки двигателей применяют аппараты, называемые контроллерами. По роду тока контроллеры бывают постоянного и переменного тока. Контроллеры, контакты которых включаются в силовые цепи электродвигателей, называются силовыми контроллерами.

Имеются контроллеры, которые замыкают цепи управления электромагнитных аппаратов, а они, в свою очередь, замыкают и размыкают силовые цепи электродвигателей. Такие контроллеры называются командоконтроллерами.

В зависимости от конструкции контактовой системы контроллеры могут быть барабанные и кулачковые. Вал барабанного контроллера поворачивается при помощи штурвала. На валу изолированно от него укреплены медные пластины, имеющие форму сегментов и являющиеся подвижными контактами. Сегменты могут быть разной длины и смещены один относительно другого на некоторый угол. Некоторые сегменты электрически соединяются между собой. При повороте вала контроллера его сегменты соединяются с неподвижными контактами, укрепленными на изолирующей планке. Неподвижные контакты пальцевого типа оканчиваются легко сменяемыми «сухарями». В результате соединения подвижных контактов с неподвижными производятся необходимые переключения в управляемой цепи.

Кулачковый контроллер состоит из комплекта кон-такторных элементов, замыкающихся и размыкающихся при помощи кулачковых шайб, расположенных на валу контроллера. Для лучшего гашения дуги каждый контактный элемент контроллера снабжен индивидуальными приспособлением для гашения дуги. Контакты кулачковых контроллеров имеют большую разрывную мощность, чем контакты барабанных контроллеров, и допускают большее число включений (до 600 включений в час).

30Магнитные пускатели переменного тока предназначены в основном для дистанционного управления асинхронными электродвигателями. Осуществляют также нулевую защиту, т. е. при исчезновении напряжения или его снижении на 40-60% от номинального магнитная система отпадает и силовые контакты размыкаются. В комплекте с тепловым реле пускатели выполняют также защиту электродвигателей от перегрузок и от токов, возникающих при обрыве одной из фаз.

Наиболе распространенные серии пускателей с контактной системой и электромагнитным приводом: ПМЕ, ПМА, ПА*, ПВН, ПМЛ, ПВ, ПАЕ*, ПМ12.

Пускатели выпускаются в открытом, защищенном и пылебрызгонепроницаемом исполнениях, с тепловыми реле и без них, бывают реверсивными и нереверсивными.

Принцип действия пускателя заключается в следующем: при включении пускателя по катушке проходит электрический ток, сердечник намагничивается и притягивает якорь, при этом главные контакты замыкаются, по главной цепи протекает ток.

Автоматический выключатель – это механический аппарат, предназначенный для коммутации (включения и отключения) электрической цепи. Он может коммутировать как электрические цепи находящиеся в нормальном состоянии, так и при коротких замыкания.

плавкие предохранители- Устройство, которое за счет расплавления одной или нескольких его деталей, имеющих определенную конструкцию и размеры, размыкает цепь, в которую оно включено, прерывая ток, если он превышает заданное значение в течение определенного времени. Предохранитель включает в себя все детали, образующие готовые изделия." Плавкий предохранитель является самым слабым участком защищаемой электрической цепи, срабатывающим в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение более ценных элементов электрической цепи высокой температурой[1], вызванной чрезмерными значениями силы тока.

Реле́ (фр. relais) — электрическое или электронное устройство (ключ), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных воздействий.

стройства, чувствительные к температуре (тепловые реле), освещённости (фотореле), уровню звукового давления (акустические реле) и др. Также, часто реле называют различные таймеры, например, таймер указателя поворота автомобиля, таймеры включения/выключения различных приборов и устройств, например, бытовых приборов (реле времени).Тепловые реле - это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле - ТРП, ТРН, РТЛ и РТТ.

Принцип действия тепловых реле

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования.

Реле топловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

31.Полупроводниковые диоды

Полупроводниковым диодом называется прибор, который имеет два вывода и содержит один p-n-переход. Основными их достоинствами являются: малые размеры; высокий КПД; большой срок службы.

.ПД можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды, как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участка с отрицательным сопротивлением и др. выпрямительные диоды делятся на плоскостные и точечные, а по технологиям изготовления на сплавные, диффузионные и эпитаксиальные. Плоскостные диоды благодаря большой площади p-n-перехода используются для выпрямления больших токов. Точечные диоды имеют малую площадь р-n-перехода и, соответственно, предназначены для выпрямления малых токов.

31. проводимость полупроводников.

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры

Условия, при которых полупроводники начинают проводить электрический ток:

повышение температуры;

приложение электрического поля (напряжения);

освещение

У полупроводников двойственная природа носителей заряда: электронно-дырочная. Собственная проводимость - когда в полупроводнике число свободных электронов и дырок одинаково.

Проводимость, созданная введением примеси, называется примесной проводимостью. Примесная проводимость бывает двух видов:

Электронная, или донорная, у полупроводников n-типа;

Дырочная, или акцепторная, у полупроводнике в p-типа

32Выпрямители переменного тока

Нормальная работа аппаратуры управления требует подачи в анодные и сеточные цепи электронных и ионных приборов, а также и в другие узлы схем постоянного напряжения. Для преобразования переменного напряжения в постоянное имеется множество схем выпрямления с использованием в качестве вентилей электронных ламп, ионных и полупроводниковых приборов. Каждый из вентилей характеризуется тем, что обладает незначительным сопротивлением току одного направления и большим, а в ряде случаев практически бесконечным сопротивлением току противоположного знака.Простейшим из выпрямителей является однополупериодный выпрямитель, превращающий переменный ток в пульсирующий ток одного направления. В течение положительных полуволн через выпрямитель протекает ток. На сопротивлении нагрузки выпрямленное напряжение имеет такую же форму. Однако в общем случае источником питания в схемах выпрямления является вторичная обмотка трансформатора. Трансформаторное питание позволяет получать требуемую величину выпрямленного напряжения, а также электрически разобщает разные выпрямители, работающие на одну и ту же схему.Однополупериодный выпрямитель характеризуется глубокими пульсациями выпрямленного напряжения. Пульсации можно уменьшить, используя двухполупериодное выпрямление. Такой выпрямитель может быть выполнен при помощи двух вентилей.В течение положительных полуволн напряжения пропускает вентиль и через нагрузку течет ток. При отрицательных полуволнах работает вентиль 2 и через нагрузку проходит ток 2, направление которого совпадает с направлением тока 1. Оба тока образуют на сопротивлении нагрузки R двухполупериодное выпрямленное напряжение. Двухполупериодное выпрямление можно получить также с помощью четырех вентилей, включенных по схеме моста. В течение положительных полуволн напряжения проводят вентили В1 и В3. При отрицательных полуволнах работают вентили В2 и B4. Ток через нагрузку Ru протекает в одном и том же направлении.Достоинство мостового выпрямителя состоит в том, что для получения заданного выпрямленного напряжения подводимое переменное напряжение на трансформаторе может быть уменьшено вдвое по сравнению с предыдущей схемой, в связи с чем уменьшается требование к вентильной прочности выпрямителей.При трехфазном двухполупериодном выпрямлении получается еще большее значение среднего выпрямленного напряжения и меньшие пульсации.Фильтры. Схемы выпрямления обычно снабжаются электрическими фильтрами, которые в значительной степени сглаживают пульсации выпрямленного напряжения и тока.В качестве фильтра может использоваться емкость, индуктивность или их комбинация.Умножители напряжения. Среди различных выпрямляющих устройств известны схемы не только с выпрямлением подводимого переменного напряжения, но и одновременно с его умножением без использования трансформатора. Отсутствие трансформатора является основным достоинством таких схем. Их главный недостаток состоит в том, что величина выпрямленного напряжения сильно зависит от тока нагрузки и для отбора значительной мощности требуются конденсаторы с большой номинальной емкостью.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение образованное на «вершинах» трёхфазного напряжения.

33 Под электрическими фильтрами понимают четырехполюсники, включаемые между источником питания и приемником (нагрузкой), назначение которых состоит в том, чтобы беспрепятственно (без затухания) пропускать к приемнику токи одних частот и задерживать или пропускать, но с большим затуханием, токи других частот.

Диапазон частот, пропускаемых фильтром без затухания, называется полосой прозрачности или полосой пропускания. Диапазон частот, пропускаемых с затуханием, называется полосой затухания.

Электрические фильтры собирают из катушек индуктивности и конденсаторов. Исключение составляют RC-фильтры. Фильтры используют в радиотехнике и технике связи, где применяют токи высоких частот, а также в преобразовательной технике, когда предъявляются повышенные требования к спектральному составу токов.

Как правило, индуктивное сопротивление катушек намного превосходит их активное сопротивление , поэтому можно считать R = 0. Проводимостью конденсаторов, обусловленной токами утечки, также можно пренебречь.

Фильтры обычно собирают по симметричной Т- или П-образной схеме (рис. 12.1).

В этих схемах и .

Рис. 12.1. Т-образная (а) и П-образная (б) схемы фильтров

Фильтры, у которых произведение продольного сопротивления на поперечную проводимость представляет собой некоторое постоянное для данного фильтра число k, не зависящее от частоты, принято называть k-фильтрами. Фильтры, в которых это произведение зависит от частоты, называются m-фильтрами.

Сопротивление нагрузки , присоединяемое на выходе фильтра, должно быть согласовано с характеристическим сопротивлением фильтра ZС.

В k-фильтрах волновое сопротивление существенно изменяется в зависимости от частоты w, находящейся в полосе прозрачности. В связи с этим необходимо изменять сопротивление нагрузки в функции от частоты, что связано с техническими трудностями и является нежелательным. В m-фильтрах данный недостаток отсутствует.

Качество фильтра тем выше, чем более резко выражены его фильтрующие свойства, т.е. чем более резко возрастает затухание в полосе затухания.

Фильтрующие свойства четырехполюсников физически обусловлены возникновением в них резонансных режимов – резонансов токов и напряжений.

← Эксплуатационные параметры четырехполюсников Основы теории k-фильтров →

Плотность тока и ток

Способы согласования линии без потерь с нагрузкой

Методы расчета нелинейных цепей постоянного тока

Скалярный потенциал магнитного поля

Статические, дифференциальные, динамические и эквивалентные параметры нелинейных элементов

Самое читаемое:

Измерение силы токов и напряжений

Классификация элементов автоматики. Основные понятия

Законы Кирхгофа. Составление уравнений для расчета токов с помощью законов Кирхгофа

электрическими фильтрами понимают четырехполюсники, включаемые между источником питания и приемником (нагрузкой), назначение которых состоит в том, чтобы беспрепятственно (без затухания) пропускать к приемнику токи одних частот и задерживать или пропускать, но с большим затуханием, токи других частот.

Электрические фильтры собирают из катушек индуктивности и конденсаторов. Исключение составляют RC-фильтры. Фильтры используют в радиотехнике и технике связи, где применяют токи высоких частот, а также в преобразовательной технике, когда предъявляются повышенные требования к спектральному составу токов.

Фильтры обычно собирают по симметричной Т- или П-образной схеме.Фильтры, у которых произведение продольного сопротивления на поперечную проводимость представляет собой некоторое постоянное для данного фильтра число k, не зависящее от частоты, принято называть k-фильтрами. Фильтры, в которых это произведение зависит от частоты, называются m-фильтрами.

качество фильтра тем выше, чем более резко выражены его фильтрующие свойства, т.е. чем более резко возрастает затухание в полосе затухания.

Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток[1

Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, для сглаживания пульсаций применяют фильтры.

Зашита преобразовательных установок

Промышленные преобразовательные установкиВ большинстве практических случаев выпрямители средней и большой мощности применяются не только для выпрямления переменного тока в постоянный, но должны позволять плавно регулировать среднее значение выпрямленного напряжения Ufj. Это обусловливается необходимостью стабилизации напряжения на нагрузке при изменении напряжения питающей сети или тока нагрузки, а также для регулирования напряжения для управления частотой вращения двигателей постоянного тока, при зарядке аккумуляторных батарей и т.п.

широкое применение для регулирования напряжения на нагрузке получил способ, основанный на управлении во времени моментом отпирания вентилей выпрямителя за интервал проводимости. Он базируется на использовании в схеме выпрямителя управляемых вентилей— тиристоров, в связи с чем такой выпрямитель называют управляемым.

Вопрос №34

Автоматизация - применение технических средств, экономическо-математических методов и систем управления, освобождающих человека полностью или частично от непосредственного участия в процессе получения, преобразования, передачи и использования энергии, материалов или информации.

Элементом автоматики называется часть устройства автоматической системы, которая выполняет самостоятельные функции в качественных или количественных преобразований физических величин/

Автоматика - это отрасль науки и техники, изучающая теорию и принципы построения систем управления объектами, функционирующими без непосредственного участия человека/

Объектом управления ОУ называют техническое устройство, для достижения желаемых результатов функционирования которого необходимы специально организованные воздействия. Объектами управления могут быть технические объекты (теплицы, теплогенераторы и т.д.), технологические объекты, экономические системы, социальные системы.

Элементами автоматики называются конструктивно законченные устройства, выполняющие определенные самостоятельные функции преобразования сигнала (информации) в системах автоматического управления и контроля.

АСУ - это, как правило, система «человек-машина», призванная обеспечивать автоматизированный сбор и обработку информации, необходимый для оптимизации процесса управления. В отличие от автоматических систем, где человек полностью исключён из контура управления, АСУ предполагает активное участие человека в контуре управления, который обеспечивает необходимую гибкость и адаптивность АСУ.

1. Классификация АСУ

1.1. Информационные системы

Цель таких систем - получение оператором информации с высокой достоверностью для эффективного принятия решений. Характерной особенностью для информационных систем является работа ЭВМ в разомкнутой схеме управления. Причём возможны информационные системы различного уровня.

Информационные системы должны, с одной стороны, представлять отчёты о нормальном ходе производственного процесса и, с другой стороны, информацию о ситуациях, вызванных любыми отклонениями от нормального процесса.

Различают два вида информационных систем: информационно-справочные (пассивные), и информационно-советующие (активные),

В информационно справочных системах ЭВМ необходима только для сбора и обработки информации об управляемом объекте.

1.2. Управляющие системы

Управляющая система осуществляет функции управления по определённым программам, заранее предусматривающим действия, которые должны быть предприняты в той или иной производственной ситуации. За человеком остаётся общий контроль и вмешательство в тех случаях, когда возникают непредвиденные алгоритмами управления обстоятельства. Управляющие системы имеют несколько разновидностей.

Супервизорные системы управления. АС предназначена для организации многопрограммного режима работы ЭВМ и представляет собой двухуровневую иерархическую систему,

Системы прямого цифрового управления. ЭВМ непосредственно вырабатывает оптимальные управляющие воздействия и с помощью соответствующих преобразователей передаёт команды управления на исполнительные механизмы. Режим прямого цифрового управления позволяет применять более эффективные принципы регулирования и управления и выбирать их оптимальный вариант;

Классификация АСУ существенным образом зависит от критериев классификации.

По виду используемой управляющим устройством информации различают разомкнутые и замкнутые АСУ:

По характеру изменения задающего воздействия АСУ можно отнести к следующим видам:

- автоматической стабилизации, задающее воздействие в которых постоянно; эти системы предназначены для поддержания (температуры, давления, скорости вращения и т.д.);

- программного управления, задающее воздействие в которых изменяется по какому-либо заранее известному закону (например, по определенной программе может осуществляться изменение скорости вращения электропривода, изменение температуры изделия при термической обработке и т.д.);

- следящие, задающее воздействие в которых изменяется по произвольному, заранее неизвестному закону (используются для управления параметрами объектов управления при изменении внешних условий).

35. Государственная система приборов и средств автоматизации (ГСП). Назначение и состав ГСП. Характеристика электрической, пневматической гедравлической ветвей ГСП.

Государственная система промышленных приборов и средств автоматизации (ГСП) создана с целью обеспечения техническими средствами систем контроля, регулирования и управления технологическими процессами в различных отраслях народного хозяйства.

На ранних этапах создания средств автоматики в различных организациях и на предприятиях разрабатывалось множество различных приборов измерения и контроля со сходными техническими характеристиками, однако при этом не учитывалась возможность совместной работы приборов различных производителей. Это приводило к увеличению стоимости разработок сложных систем и тормозило широкое внедрение средств автоматизации. Поэтому в 1960 г. было принято решение о создании ГСП, а с 1961 г. начались работы по ее реализации.

В настоящее время ГСП представляет собой эксплуатационно, информационно, энергетически, метрологически и конструктивно организованную совокупность изделий, предназначенных для использования в качестве средств автоматических и автоматизированных систем контроля, измерения, регулирования технологических процессов, а также информационно-измерительных систем. ГСП стала технической базой для создания автоматических систем управления технологическими процессами (АСУ ТП) и производством (АСУП) в промышленности. Ее развитие и применение способствовали формализации процесса проектирования АСУ ТП и переходу к машинному проектированию.

В основу создания и совершенствования ГСП положены следующие системотехнические принципы: типизация и минимизация многообразия функций автоматического контроля, регулирования и управления; минимизация номенклатуры технических средств; блочно-модульное построение приборов и устройств; агрегатное построение систем управления на базе унифицированных приборов и устройств; совместимость приборов и устройств.

В первую группу устройств в зависимости от способа представления информации входят: датчики; нормирующие преобразователи, формирующие унифицированный сигнал связи; приборы, обеспечивающие представление измерительной информации в форме, доступной для непосредственного восприятия наблюдателем, и устройства алфавитно-цифровой информации, вводимой оператором вручную.

Вторая группа устройств содержит коммутаторы измерительных цепей, преобразователи сигналов и кодов, шифраторы и дешифраторы, согласующие устройства, средства телесигнализации, телеизмерения и телеуправления. Эти устройства используют для преобразования как измерительных, так и управляющих сигналов.

Третью группу составляют анализаторы сигналов, функциональные и операционные преобразователи, логические устройства и устройства памяти, задатчики, регуляторы, управляющие вычислительные устройства и комплексы.

В четвертую группу входят исполнительные устройства (электрические, пневматические, гидравлические или комбинированные исполнительные механизмы), усилители мощности, вспомогательные устройства к ним, а также устройства представления информации.

36. Измерения и метды измерения. Основные элементы автоматики.

Измерение - процесс нахождения значения физической величины опытным путем с помощью средств измерения.

Результатом процесса является значение физической величины Q = qU , где q - числовое значение физической величины в принятых единицах; U - единица физической величины. Значение физической величины Q, найденное при измерении, называют действительным.

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

Метод измерений - совокупность приемов использования принципов и средств измерений.

Средствами измерений (СИ) являются используемые технические средства, имеющие нормированные метрологические свойства.

Существует различные виды измерений. Классификацию видов измерения проводят, исходя из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

По характеру зависимости измеряемой величины от времени измерения выделяют статические и динамические измерения.

Статические - это измерения, при которых измеряемая величина остается постоянной во времени. Такими измерениями являются, например, измерения размеров изделия, величины постоянного давления, температуры и др.

Динамические - это измерения, в процессе которых измеряемая величина изменяется во времени, например, измерение давления и температуры при сжатии газа в цилиндре двигателя.

По способу получения результатов, определяемому видом уравнения измерений, выделяют прямые, косвенные, совокупные и совместные измерения.

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q - искомое значение измеряемой величины, а X - значение, непосредственно получаемое из опытных данных. Примерами таких измерений являются: измерение длины линейкой или рулеткой, измерение диаметра штангенциркулем или микрометром, измерение угла угломером, измерение температуры термометром и т.п.

Косвенные - это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями. Таким образом, значение измеряемой величины вычисляют по формуле Q = F(x1, x2 ... xN), где Q - искомое значение измеряемой величины; F - известная функциональная зависимость, x1, x2, … , xN - значения величин, полученные прямыми измерениями. Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения, измерение среднего диаметра резьбы методом трёх проволочек и т.д. Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить прямым измерением. Встречаются случаи, когда величину можно измерить только косвенным путём, например размеры астрономического или внутриатомного порядка.

Совокупные - это такие измерения, при которых значения измеряемых величин определяют по результатам повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Значение искомой величины определяют решением системы уравнений, составляемых по результатам нескольких прямых измерений. Примером совокупных измерений является определение массы отдельных гирь набора, т.е. проведение калибровки по известной массе одной из них и по результатам прямых измерений и сравнения масс различных сочетаний гирь. Рассмотрим пример совокупных измерений, который заключается в проведении калибровки разновеса, состоящего из гирь массой 1, 2, 2*, 5, 10 и 20 кг. Ряд гирь (кроме 2*) представляет собой образцовые массы разного размера. Звездочкой отмечена гиря, имеющая значение, отличное от точного значения 2 кг. Калибровка состоит в определении массы каждой гири по одной образцовой гире, например по гире массой 1 кг. Меняя комбинацию гирь, проведем измерения. Составим уравнения, где цифрами обозначим массу отдельных гирь, например 1обр обозначает массу образцовой гири в 1 кг, тогда: 1 = 1обр + a; 1 + 1обр = 2 + b; 2* = 2 + c; 1 + 2 + 2* = 5 + d и т.д. Дополнительные грузы, которые необходимо прибавлять к массе гири указанной в правой части уравнения или отнимать от неё для уравновешивания весов, обозначены a, b, c, d . Решив эту систему уравнений, можно определить значение массы каждой гири.

Совместные - это измерения, производимые одновременно двух или нескольких разноименных величин для нахождения функциональной зависимости между ними. Примерами совместных измерений являются определение длины стержня в зависимости от его температуры или зависимости электрического сопротивления проводника от давления и температуры.

По условиям, определяющим точность результата, измерения делятся на три класса.

1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

В зависимости от способа выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называют измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант. Примерами абсолютных измерений являются: определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.

Относительными называют измерения, при которых искомую величину сравнивают с одноименной величиной, играющей роль единицы или принятой за исходную. Примерами относительных измерений являются: измерение диаметра обечайки по числу оборотов мерного ролика, измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 куб.м воздуха к количеству водяных паров, которое насыщает 1 куб.м воздуха при данной температуре.

В зависимости от способа определения значений искомых величин различают два основных метода измерений метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки - метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия. Примерами таких измерений являются: измерение длины с помощью линейки, размеров деталей микрометром, угломером, давления манометром и т. д.

Метод сравнения с мерой - метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения диаметра калибра оптиметр устанавливают на нуль по блоку концевых мер длины, а результат измерения получают по показанию стрелки оптиметра, являющегося отклонением от нуля. Таким образом, измеряемая величина сравнивается с размером блока концевых мер.Существуют несколько разновидностей метода сравнения:

а) метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами, например измерение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора;

б) дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на нуль по блоку концевых мер длины;

в) нулевой метод - также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Этим методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием;

г) при методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов. Например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал.

В зависимости от способа получения измерительной информации, измерения могут быть контактными и бесконтактными.

В зависимости от типа, применяемых измерительных средств, различают инструментальный, экспертный, эвристический и органолептический методы измерений.

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный метод оценки основан на использовании суждений группы специалистов.

Эвристические методы оценки основаны на интуиции.

Органолептические методы оценки основаны на использовании органов чувств человека. Оценка состояния объекта может проводиться поэлементными и комплексными измерениями. Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности. Например, эксцентриситета, овальности, огранки цилиндрического вала. Комплексный метод характеризуется измерением суммарного показателя качества, на который оказывают влияние отдельные его составляющие. Например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; контроль положения профиля по предельным контурам и т. п.

Элементами автоматики – называются конструктивно законченные устройства, выполняющие определенно самостоятельные функции преобразования сигнала(информации),в системах автоматического управления и контроля. Структурная схема служит для определения функциональных частей, их назначения и взаимосвязей Функциональная схема предназначена для определения характера процессов, протекающих в отдельных функциональных цепях или установке в целом. Принципиальная схема, показывающая полный состав элементов установки в целом и все связи между ними, дает основное представление о принципах работы соответствующей установки. Монтажная схема иллюстрирует соединения составных частей установки с помощью проводов, кабелей, трубопроводов. Схема подключения показывает внешние подключение установки или изделия. Общая схема служит для определения составных частей комплекса и способов их соединения на месте эксплуатации. Объединенная схема включает в себя несколько схем разных видов в целях более ясного раскрытия содержания и связей элементов установки. Чертежи и схемы выполняют по определенным правилам, которые изложены в действующих стандартах ЕСКД. Датчик (измерительный преобразователь, чувствительный элемент) – устройство, предназначенное для того, чтобы информацию, поступающую на его вход в виде некоторой физической величины, функционально преобразовать в другую физическую величину на выходе, более удобную для воздействия на последующие элементы (блоки). Усилитель – элемент автоматики, осуществляющий количественное преобразование (чаще всего усиленное) поступающий на его вход физической величины (тока, мощности, напряжения, давления). Стабилизатор – элемент автоматики, обеспечивающий постоянство выходной величиныупри колебаниях входной величины хв определенных пределах. Эффект стабилизации достигается за счет изменения параметров элементов, входящих в систему стабилизатора, при этом вид энергии на его входе и выходе должен быть один и тот же. Реле – элемент автоматики, в котором при достижении входной величины х определенное значения выходная величина у измеряется скачком. Распределитель (шаговый искатель) – элемент автоматики, осуществляющий поочередное подключение одной величины к ряду цепей. Распределители используются при необходимости управления несколькими объектами от одного и того же управляющего органа. Исполнительные устройства – электромагниты с втяжным и повторным якорем, электромагнитные муфты, а также электродвигатели, относящееся к электромеханическим исполнительным элементом автоматических устройств. Электромагниты преобразуют электрический сигнал в механическое движение, их применяют для перемещения рабочих органов, например клапанов, вентилей, золотников. Электромагнитные муфты используются в электропроводах и устройствах управления для быстрого включения и выключения проводимого механизма, а так же для его реверса, т.е. изменения направления движения управления устройства. Электродвигатель – это устройство, обеспечивающее преобразование электрической энергии в механическую и преодолевающее при этом значительное механическое сопротивление со стороны перемещаемых устройств. Одним из главных требований предъявляемых к электродвигателем, является их способность развивать требуемую механическую мощность. Кроме того, электродвигатель должен обеспечивать реверс, а так же движение объекта с заданными скоростями и ускорениями. Элементом распределения могут быть также характер действия ( электрический, пневматический , гидравлический) и принцип действия. Элементы усиления разделяют прежде всего по выполняемым функциям: усилители тока, напряжение, мощности как постоянного так и переменного тока. Элементы вычисления главным признаком является функциональная зависимость т.е. математическое действие, для которого он предназначен – сложение, вычитание, деление, умножение. Элементы памяти классифицируются как по выполняемым функциям , так и по принципу их действия. Элементами исполнения могут быть всевозможные простейшие и сложные устройства, классифицировать которые трудно, хотя, видимо, их можно подразделить по принципу действия, имея в виду так же и разделение в зависимости от характера действия.

37. Понятия о точности измерительных приборов: погрешности измерения, класс точности.

Точность результата измерения - характеристика качества измерения, отражающая близость к нулю погрешности его результата. Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора, недостаточной тщательности проведения измерения, воздействия внешних условий и т. д. Для уменьшения погрешностей необходимо устранить или уменьшить влияние каждой из причин их появления. Точность измерений обычно характеризуется погрешностью измерения. Считается, что чем меньше погрешность измерения, тем больше его точность.

Каждый результат содержит погрешность, величину которой можно представить в следующем виде:

где Дхим - погрешность измерения; хизи - результат измерения; ^ - действительное (истинное) значение измеряемой величины.

Так как истинное значение физической величины дг(/ неизвестно, то для определения погрешности измерения вместо него принимают действительное значение физической величины х" определяемое с точностью, достаточной для оценки погрешности измерения. Тогда погрешность измерения можно оценить разностью между результатом измерения X и действительным размером хг:

Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятностей и математической статистики. Использование методов, разработанных в рамках теории вероятностей и математической статистики, позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят, ^го дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие получение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).

Класс точности — основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.

Следует иметь в виду, что понятие класса точности встречается в различных областях техники. Так в станкостроении имеется понятие класса точности металлорежущего станка, класса точности электроэрозионных станков (по ГОСТ 20551).

Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.

38. Измерение температуры. Термометры расширения.

Температура является важным параметром, определяющим не только протекание технологического процесса, но и свойства вещества. Для измерения температуры в системе единиц СИ принята температурная шкала с единицей температуры Кельвин (К). Начальной точкой этой шкалы является абсолютный нуль (0 К).

Для технологических измерений часто применяют температурную шкалу с единицей температуры градус Цельсия (°С),

Для измерения температуры используют различные первичные преобразователи, отличающиеся способом преобразования температуры в промежуточный сигнал. В промышленности наибольшее применение получили следующие первичные преобразователи: термометры расширения, манометрические термометры, термометры сопротивления, термопары (термоэлектрические пирометры) и пирометры излучения. Все они, за исключением пирометров излучения, в процессе эксплуатации находятся в контакте с измеряемой средой.

Термометры расширения

Действие термометров расширения основано на изменении объема жидкостей и твердых тел при изменении температуры. Из термометров расширения наиболее широко применяют жидкостные стеклянные термометры. Такой термометр заполняется жидкостью (ртуть, толуол, этиловый спирт и др.), которая с увеличением темпера туры расширяется и поднимается вверх по капилляру.

Таким образом, температура, измеряемая жидкостным термометром, преобразуется в линейное перемещение жидкости. Шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи.

При монтаже стеклянный термометр помещают в защитную металлическую оправу, изолирующую его от измеряемой среды.

39. Манометрические термометры.

Действие манометрических термометров основано на изменении давления газа, пара или жидкости в замкнутом объеме при изменении температуры. Манометрический термометр состоит из термобаллона, гибкого капилляра и манометра.

В зависимости от заполняющего вещества манометрические термометры делятся на газовые, парожидкостные и жидкостные.

Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объема увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр (обычно латунная трубка внутренним диаметром, составляющим доли миллиметра) позволяет удалить манометр от места установки термобаллона. Капилляр по всей длине защищен оболочкой из стальной ленты. Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами.

Наиболее уязвимыми в конструкции манометрических термометров являются места присоединения капилляра к термобаллону и манометру. Поэтому монтировать и обслуживать такие приборы следует осторожно.

40. Термоэлектрические термометры: первичные преобразователи, милливльтметры, потенциометры.

Термоэлектрический термометр

Термопара – это спаянные проволоки из разнородных металлов или сплавов, предназначенные для измерения температуры на основе прямого термоэлектрического эффекта. Их можно изготовить, самостоятельно, но у промышленно изготовленных известно ЭДС при разных температурах.

Образцовая термопара изготавливается из платины и платинородиевого сплава. Она позволяет измерить температуру до 1600 °С.

Это две одинаковые термопары, соединенные последовательно с гальвонометром. С помощью такого термометра можно определить температуру на основании определения ЭДС: чем больше разность температур, тем больше ЭДС и тем больший ток идет по цепи. Термопара В, находящаяся при постоянной t называется холодной или свободной. Термопара (А) предназначенная для измерения температур – это горячая или рабочая.

E = aDtAB tB = 0 °C E = a(tA – tB) = atA.

Для каждой термопары a определяется по таблице или экспериментально. На практике вместо a используют n, который учитывает a и чувствительность гальванометра.

Прямой термоэлектрический эффект применяется для измерения t тела человека, t различных сред, t в сушильных шкафах и термостатах.

Значительная термо ЭДС (по величине) достигается не только выбором металлов или увеличением разности температур, но и последовательным соединением нескольких термопар в батарею (называется термостолбик). При таком соединении n-ого числа термопар, ЭДС возрастает в n раз.

Первичный измерительный преобразователь – измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т.е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы).

Одной из основных частей ПИП является чувствительный элемент, который воспринимает входную физическую величину.

Милливольтметр это измерительный прибор магнитоэлектрической системы. Принцип действия его основан на взаимодействии проводника, по которому протекает постоянный ток, с магнитным полем постоянного магнита. Термоэлектрический преобразователь с помощью соединительных проводов подключается к милливольтметру (рис. 2.11). При этом внешнее сопротивление Лвн необходимо сделать равным значению, указанному на шкале прибора (0,6; 1,6; 5,0; 15; 25 Ом). Для этой цели имеется специальная манганиновая катушка Лу, включенная последовательно с ТЭП.

Шкалы милливольтметров градуируются в градусах или милливольтах. Если шкала отградуирована в градусах Международной практической шкалы, то милливольтметр называется пирометрическим (ПМВ). Градусная шкала используется только тогда, когда градуировка ТЭП соответствует градуировке шкалы милливольтметра. Промышленные приборы выпускаются с классами точности 0,2; 0,5; 1,0.

Принцип действия потенциометров основан на компенсации измеряемой термоЭДС известной разностью потенциалов, создаваемой внешним источником.

Потенцио?метр — регулируемый делитель электрического напряжения, представляющий собой, как правило, резистор с подвижным отводным контактом (движком). С развитием электронной промышленности помимо «классических» потенциометров появились также цифровые потенциометры (англ.)русск. (например, AD5220 от Analog Devices). Такие потенциометры, как правило, представляют собой ИС, не имеющие подвижных частей и позволяющие программно выставлять собственное сопротивление с заданным шагом.

Большинство разновидностей переменных резисторов могут использоваться как в качестве потенциометров, так и в качестве реостатов, разница в схемах подключения и в назначении (потенциометр — регулятор напряжения, реостат — силы тока).

Потенциометры используются в качестве регуляторов параметров (громкости звука, мощности, выходного напряжения и т. д.), для подстройки внутренних характеристик цепей аппаратуры (подстроечный резистор), на основе прецизионных потенциометров построены многие типы датчиков углового или линейного перемещения.

41)ТС: первичные преобразователи, мосты и лагометры

Термометры сопротивления – это первичные преобразователи температуры, принцип действия которых базируется на зависимости электрического сопротивления проводника или полупроводника от температуры.

Чаще всего в качестве материала проводника используется платина или медь.

Маркировка:

ТСП-XX – платиновый, ТСМ-XX – медный (ХХ–номер градуировки).

Электронные автоматические мосты предназначены для непрерывного измерения, записи и регулирования температуры в комплекте с ТС стандартных градуировок. Их также применяют и для определения других величин, которые могут быть преобразованы в изменения сопротивления датчика. Мосты могут быть самопишущими, показывающими и регулирующими.

В основу работы эл. автомат. моста положен принцип уравновешивания мостовой схемы, в одно из плеч которой включен термометр сопротивления.

Логометры прим. в качестве вторичных приборов в комплекте с ТС. Магнитная система логометра включает в себя постоянный магнит с полюсными наконечниками и цилиндрический сердечник. Воздушный зазор в магнитной цепи расширяется от середины наконечников к их краям, соответственно уменьшается магнитная индукция в зазоре.

Для работы в комплекте с ТС выпускаются показывающие и самопишущие логометры. Щитовые показывающие логометры выпускаются в различных конструктивных формах и габаритах с круглыми и профильными шкалами. Для целей сигнализации и позиционного регулирования выпускаются логометры с фотоэлектрическими реле, срабатывающими при определенном положении стрелки указателя логометра.

42)Контроль давления и разрежения. Жидкостные и грузопоршневые манометры.

Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности про-ва. Кроме того, этот параметр исп. при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности.

Давление – физическая величина, равная нормальной поверхностной силе, приходящейся на единицу площади. В зав. от нач. точки отсчета можно определить абсолютное, избыточное, атмосферное, дифференциальное давление и вакуум. Все тела, находящиеся на земной поверхности, испытывают со всех сторон одинаковое давление атмосферы (атмосферное). Абсолютное давление – полное давление с учетом давления атмосферы, отсчитываемое от абсолютного нуля.

Избыточное (манометрическое) давление – давление сверх атмосферного, равное разности между абсолютным и атмосферным давлением. Условный нуль- атмосферное давление.

Вакуум (разрежение) – давление ниже атмосферного. Обычно определяется как избыточное давление прибором, измеряющим разность между неизвестным давлением и атмосферным.

Дифференциальное давление – разность двух измеряемых давлений, ни одно из которых не является давлением окружающей среды.

(Различают приборы давления в зависимости от измеряемой величины: манометры – для измерения избыточного давления в широком диапазоне; вакуумметры– для измерения глубокого разрежения; напоромеры, тягомеры, тягонапоромеры – для измерения небольших избыточных или вакуумметрических давлений до 40 кПа в газовыходах; дифференциальные манометры – для измерения разности двух давлений (перепада), ни одно из которых не является давлением окружающей среды.)

Жидкостные манометры. В таких приборах измеряемое давление (разрежение) либо разность давлений уравновешивается давлением столба манометрической жидкости, заполняющей прибор. Диапазон измерения - 10 - 105Па. Жидкостные манометры прим. в основном при определении давления в лаб. условиях и при поверке других манометров. 

В поплавковых, колокольных и кольцевых дифманометрах мера измеряемого давления (перепада) - не высота столба жидкости, а определяемое им положение подвижного элемента прибора. Манометрической жидкостью в поплавковых дифманометрах обычно служит ртуть или силиконовое масло. В колокольных манометрическая жидкость - вода или масло. В кольцевых (кольцевых весах) замкнутый сосуд с непроницаемой перегородкой в верхней части установлен на призматическую опору, которая расположена в центре тяжести сосуда.

Грузопоршневые манометры. В этих приборах измеряемое давление, действующее через манометрическую жидкость на поршень манометра, уравновешивается весом поршня и набора калиброванных грузов. Наиболее распространены манометры с неуплотненным поршнем, между которым и цилиндром имеется небольшой зазор. Пространство под поршнем заполнено специальным маслом, которое под давлением поступает в зазор и обеспечивает смазку трущихся поверхностей. Изменяя вес грузов и площадь сечения поршня, можно изменять пределы измерения манометры в широком диапазоне (от 2500 Па до 2500 MПа). Приборы отличаются высокой точностью и стабильностью показаний. Исп., для поверки манометров других типов и при лаб. Измерениях.

43)Деформационные и электрические манометры

В деформационных манометрах используется противодействие упругой деформации чувствительного элемента (ЧЭ) или развиваемой им силы. Различают три основные формы ЧЭ: трубчатые пружины, сильфоны и мембраны.

Трубчатая пружина  – упругая металлическая трубка, один из концов которой запаян и имеет возможность перемещаться, а другой – жестко закреплен. Трубчатые пружины используются в основном для преобразования измеряемого давления, поданного во внутреннее пространство пружины, в пропорциональное перемещение ее свободного конца.

Под влиянием поданного избыточного давления трубка раскручивается, а под действием разрежения скручивается(под влиянием давления малая ось эллипса увеличивается, в то время как длина трубки остается постоянной.)

Недостаток – малый угол поворота, что требует применения передаточных механизмов. Преимущество – близкая к линейной статическая характеристика. Основное применение – показывающие приборы. Диапазоны измерений манометров от 0 до 103 МПа; Трубчатые пружины изготавливают из латуни, бронзы, нержавеющей стали.

Сильфон – тонкостенный металлический стакан с поперечными гофрами. Дно стакана перемещается под действием давления или силы.

Сильфоны изготовляют из бронзы различных марок, углеродистой стали, нержавеющей стали, алюминиевых сплавов и др. Различают упругие и эластичные мембраны. Упругая мембрана – гибкая круглая плоская или гофрированная пластина, способная получить прогиб под действием давления.

Мембраны изготовляют из различных марок стали: бронзы, латуни и т. д.

Электрические манометры, в чувствительных элементах которых происходит прямое преобразование давления в электрический измерительный сигнал. Принцип действия которых основан на зав. эл. сопротивления в-в от измеряемого давления, называют тензопреобразователями.

Эти манометры предназначены для работы в системах автоматизации в качестве измерительных преобразователей давления или разрежения со вторичной регистрирующей и показывающей аппаратурой и автоматическими регуляторами, работающими от стандартного электрического входного сигнала 0...5, 0...20 или 4... 20 мА постоянного тока.

44) Измерение расхода и количества вещества.

Для контроля и управления химическим производством большое значение имеет измерение расхода и количества различных в-в: газов, жидкостей, пульп и суспензий. Расход в-ва — это его кол-во, протекающее через сечение трубопровода в единицу времени. Количество измеряют в единицах объема (м3, см3) или массы (т, кг, г). Соответственно может измеряться объемный (м3/с, м3/ч, см3/с) или массовый (кг/с, кг/ч, г/с) расход.

Для измерения расхода веществ применяют расходомеры, основанные на разл. принципах действия: переменного и постоянного перепада давлений, переменного уровня, электромагнитные, ультразвуковые, вихревые, тепловые и турбинные. Расход сыпучих веществ обычно измеряют разл. весоизмерительными устройствами.

Для измерения кол-ва в-ва прим. расходомеры с интеграторами или счетчики. Интегратор непрерывно суммирует показания прибора, а кол-во в-ва опр. по разности его показаний за требуемый промежуток времени.

На показания приборов влияют физ. св-ва измеряемых потоков: плотность, вязкость, соотношение фаз в потоке и т. П. Физ. св-ва зав. от условий эксплуатации (температуры и давления).

Если условия эксплуатации расходомера отличаются от условий, при которых производилась его градуировка, то ошибка в показаниях прибора может значительно превысить допустимое значение. Поэтому для серийно выпускаемых приборов установлены ограничения области их применения: по свойствам измеряемого потока, максимальной температуре и давлению, содержанию твердых частиц или газов в жидкости и т. п.

45)Расходомеры переменного перепада давлений

Действие этих расходомеров основано на возникновении перепада давлений на сужающем устройстве в трубопроводе при движении через него потока жидкости или газа. При изменении расхода Q величина этого перепада давлений также изменяется.

Для некоторых сужающих устройств как преобразователей расхода в перепад давлений коэффициент передачи определен экспериментально и его значения сведены в специальные таблицы. Такие сужающие устройства называются стандартными.

Наиболее простым и распространенным сужающим устройством является диафрагма (тонкий диск с круглым отверстием в центре). От стойкости диафрагмы и особенно входной кромки отверстия существенно зав. ее коэффициент передачи. Поэтому диафрагмы изготовляют из материалов, химически стойких к измеряемой среде и устойчивых против мех. износа. Сужающее устройство расходомера переменного перепада давлений является первичным преобразователем, в котором расход преобразуется в перепад давлений.

Промежуточными преобразователями для расходомеров переменного перепада давлений служат дифманометры(связаны с сужающим устройством импульсными трубками и устанавливаются в непосредственной близости от него). Поэтому в данных расходомерах обычно используют дифманометры, снабженные промежуточным преобразователем для передачи результатов измерений на щит оператора.

Так же как при измерении давления и уровня, для защиты дифманометров от агрессивного воздействия измеряемой среды применяют разделительные сосуды и мембранные разделители.

Особенностью первичных преобразователей расходомеров переменного перепада давлений является квадратичная зависимость перепада давлений от величины расхода.

46)Расходомеры постоянного перепада давлений

Расход жидкости или газа можно измерять и при постоянном перепаде давлений. Для сохранения постоянного перепада давлений при изменении расхода через сужающее устройство необходимо автоматически изменять площадь его проходного сечения. Ротаметр представляет собой вертикальную конусную трубку, в которой находится поплавок. Измеряемый поток Q проходя через ротаметр снизу вверх, создает перепад давлений до и после поплавка. Этот перепад давлений, в свою очередь создает подъемную силу, которая уравновешивает вес поплавка.

Каждому значению расхода через ротаметр Q соответствует определенное положение поплавка. Промышленность выпускает ротаметры со стеклянными и металлическими трубками. Для дистанционного измерения положения поплавка в металлической трубке используют промежуточные преобразователи линейного перемещения в унифицированный электрический или пневматический сигнал.

В ротаметрах с электрическим выходным сигналом вместе с поплавком перемещается плунжер дифференциально-трансформаторного преобразователя. С пневматическим выходным сигналом исп. магнитная муфта. Выпускаются также ротаметры для измерения расхода сильноагрессивных сред.

Вопрос №47

Камерными называются тахометрические расходомеры и счетчики, подвижные элементы которых приходят в движение (непрерывное или периодическое) под давлением измеряемой жидкости или газа и при этом отмеривают определенные объемы или массы измеряемого вещества.

Камерные расходомеры измеряют объемный расход напрямую путем повторяющегося захвата порции жидкости. Общий объем жидкости, проходящей через расходомер в заданный промежуток времени, – это произведение объема порции на количество порций.

Камерные расходомеры часто суммируют расход напрямую на встроенный счетчик, но они также могут генерировать импульсный выход, который может быть передан в комнату управления. Так как каждый импульс представляет дискретный объем жидкости, они хорошо подходят для автоматического дозирования и учета.

Данный тип расходомеров имеет ряд преимуществ:

Высокий класс точности;

Невысокая стоимость;

Возможность измерения малых расходов;

Широкий диапазон измерения;

Возможность измерения расходов жидкостей с относительно высокой вязкостью;

Недостатки камерных измерителей расхода:

Наличие движущихся частей. Износ движущихся механизмов приводит к снижению точности измерений или к возможному выходу из строя расходомера.

Относительно сложное конструктивное исполнение.

Высокая чувствительность к механическим примесям.

Не применяют для измерения расхода в трубах с большим диаметром.

Сложность ремонта. Обычно ремонт камерных расходомеров возможен только в заводских условиях.

Камерные счетчики имеют большое число различных разновидностей. Их можно разделить на три основных группы:

с эластичными стенками камер;

без движущихся разделительных элементов;

с движущимися разделительными элементами.

Снижение точности камерных расходомеров связано с просачиванием через внутреннюю изолированную поверхность. Для того чтобы повысить точность измерения расхода и количества в существующие конструкции приборов добавляют тахометрический преобразователь.

Тахометрическими называются расходомеры, в которых скорость движения рабочего тела пропорциональна объемному расходу измеряемой среды. В большинстве случаев рабочее тело — преобразователь расхода (крыльчатка, турбинка, шарик и т.п.) — под воздействием потока вращается. В зависимости от устройства рабочего тела тахометрические расходомеры подразделяются на крыльчатые, турбинные, шариковые, камерные, кольцевые и др.

Тахометрические преобразователи расхода могут использоваться как в счетчиках количества, так и в расходомерах. В первом случае преобразователь расхода (например, турбинка) связан со счетным механизмом. Тахометрические расходомеры содержат электрические тахометрические преобразователи частоты вращения чувствительного элемента в электрический сигнал, измеряемый затем вторичным прибором. Электрические преобразователи скорости оказывают незначительное тормозящее действие на подвижный элемент (по сравнению с механической передачей в счетчиках), в силу чего точность тахометрических расходомеров выше точности счетчиков с механическим редуктором. Тахометрические приборы измеряют объемные расходы. При необходимости измерения массовых расходов они должны снабжаться либо измерителями температуры и давления, либо плотномерами, вычислительными устройствами.

Тахометрические расходомеры применяются для измерения расхода различных жидкостей (реже газов), причем некоторые их разновидности могут использоваться на загрязненных жидкостях. Наиболее широко эти расходомеры используются в коммунальном хозяйстве для учета индивидуального потребления горячей и холодной воды, газа.

Тахометрические расходомеры обладают следующими положительными чертами: широкий динамический диапазон, достигающий 25; высокая точность, получаемая за счет индивидуальной градуировки приборов; простота получения и съема показаний. К числу их недостатков относятся значительная потеря давления, требования к длинам линейных участков до (свыше 10D) и после (более 3D) счетчика, износ подшипников при наличии загрязнений в воде и газах, ограничения по диаметру трубопровода.

Номер 48

Уровнемеры представляют собой особые аппараты, используемые для замеров уровня разнообразных жидких и сыпучих веществ, а так же других материалов в емкостях, резервуарах и скважинах, в которых они непосредственно хранятся.

Визуальные уровнемеры – это один из самых простых видов измерителей уровня. Работают такие устройства по принципу сообщающихся между собой сосудов, и таким образом следят за уровнем жидкости напрямую, например через водомерное стекло.

Уровнемеры механические – такие приборы производят замер уровня в зависимости от положения предмета (датчика) на поверхности замеряемой среды (жидкости), относительно двух точек измерений такие уровнемеры еще часто называются поплавковыми. Либо также определяется по оценке уровня жидкости, вытесненной при погружении предмета.

Гидростатические – это такие уровнемеры, которые действуют по принципу уравновешивания давления потока или столба измеряемой жидкости и столба жидкости, которая заполняет непосредственно измерительный прибор.

Электрические уровнемеры (электроуровнемеры) промышленной специализации, которые в свою очередь можно поделить на емкостные и омические.

Акустические (ультразвуковые) уровнемеры работают по принципу измерения времени отражения звуковых колебаний от поверхности замеряемой среды (контролируемая среда) до прибора.

Визуальные уровнемеры – самые простейшие измерители уровня жидкости. К технологическому аппарату через запорные вентилиподсоединенное указательное стекло . Аппарат и трубка представляют собой сообщающиеся сосуды, поэтому уровень H жидкости в трубке всегда равен ее уровню в аппарате и отсчитывается по шкале.

Поплавковые уровнемеры. Измерительной частью прибора является поплавок, находящийся на поверхности измеряемой жидкости

Пьезометрические уровнемеры действуют по принципу гидравлического водяного затвора. Для измерения уровня используют воздух или инертный газ, который под давлением продувают через слой жидкости. Количество воздуха ограничивают диафрагмой или регулирующей арматурой так, чтобы скорость движения его в трубопроводе была минимальна (с целью уменьшения потерь на трение). Пьезометрические уровнемеры обширно используются для замеров уровня жидкости в подземных резервуарах или определенного рода скважинах.

Электроуровнемеры (уровнемеры электрические) преобразуют замеренные данные об уровне в определенные электрические сигналы. 49 уровнемеры поплавковые

Уровнемер — это прибор, предназначенный для определения уровня содержимого в открытых и закрытых резервуарах и хранилищах. Под содержимым подразумеваются разнообразные виды жидкостей, в том числе газообразующие, сыпучие и другие материалы. Уровнемеры иногда называют датчиками/сигнализаторами уровня, преобразователями уровня. Тем не менее, главное отличие уровнемера от сигнализатора уровня — возможность измерять градации уровня, а не только его граничные значения. В промышленном производстве в настоящее время существует ряд разнообразных технических средств, позволяющих решить задачу измерения и контроля уровня. Средства измерения уровня воплощают разнообразные методы, основанные на различных физических принципах. К наиболее распространенным методам измерения уровня, которые позволяют преобразовывать значение уровня в электрическую величину и передавать её значение в системы автоматических систем управления относятся:

- контактные методы: поплавковый, емкостный, гидростатический, буйковый;

- бесконтактные методы: зондирование звуком, зондирование электромагнитным излучением, зондирование радиационным излучением.

С развитием измерительной техники каждый из методов приобретает характерный набор своих технических реализаций, которые в каждом конкретном случае имеют и преимущества, и недостатки. По принципу действия уровнемеры для жидкостей разделяются на механические, гидростатические, электрические, акустические, микроволновые и рефлексные. При измерении уровня в сложных условиях (пыль, камни, большой угол откоса сыпучего материала) используются, как правило, лазерные уровнемеры, которые безопасны для глаз и обеспечивают отсутствие ложных отраженных сигналов.

Поплавковые

Уровнемер поплавковый предназначен для выдачи электрического дискретного сигнала об уровне жидкости и уровне раздела двух несмешивающихся жидкостей в аппаратах и резервуарах технологических установок. В поплавковых уровнемерах имеется плавающий на поверхности жидкости поплавок, в результате чего измеряемый уровень преобразуется в перемещение поплавка. В таких приборах используется легкий поплавок, изготовленный из коррозионно-стойкого материала. Показывающее устройство прибора соединено с поплавком тросом или с помощью рычагов. Поплавковыми уровнемерами можно измерять уровень жидкости в открытых емкостях.

50 уровнемеры Гидростатические

Гидростатический способ измерения уровня основан на том, что в жидкости существует гидростатическое давление, пропорциональное глубине, то есть расстоянию от поверхности жидкости. Поэтому для измерения уровня гидростатическим способом могут быть использованы приборы для измерения давления или перепада давлений. В качестве таких приборов обычно применяют дифференциальные манометры. При включении дифференциального манометра перепад давлений на нем будет равен гидростатическому давлению жидкости, которое пропорционально измеряемому уровню. При измерении уровня агрессивных жидкостей дифференциальный манометр защищается разделительными сосудами или мембранными разделителями, что позволяет заполнить его камеры и трубки неагрессивной жидкостью. При измерении уровня суспензий и шламов, осадки которых могут забивать импульсные трубки дифференциальных манометров, их непрерывно продувают сжатым воздухом. Импульсные трубки все время заполнены продуваемым воздухом. При небольшом расходе воздуха его давление в минусовой камере оказывается равным давлению над жидкостью в емкости, а в плюсовой — давлению в жидкости. Поэтому перепад давлений в дифференциальном манометре будет равен гидростатическому давлению жидкости и, следовательно, пропорционален измеряемому уровню.

Гидростатические уровнемеры - ближайшие родственники датчиков давления. Они дешевы и просты по конструкции, но имеют ограниченное применение из-за относительно низкой точности, сложности применения (монтаж на днище резервуара, требуется постоянная плотность измеряемого объекта, только для спокойных объектов/процессов). Постоянный контакт с измеряемым объектом так же накладывает свои ограничения. Скважинные уровнемеры являются разновидностью гидростатических уровнемеров.

51 уровнемеры Электрические

Принцип действия электрических уровнемеров основан на различии электрических свойств жидкостей и газов. При этом жидкости, уровень которых измеряется, могут быть как проводниками, так и диэлектрика¬ми; газы же, находящиеся в нежидкостном пространстве, всегда диэлек¬трики. Основным параметром, определяющим электрические свойства проводников, является их электропроводность, а диэлектриков - относительная диэлектрическая проницаемость, показывающая, во сколько раз по сравнению с вакуумом уменьшается в данном веществе сила взаимодействия между электрическими зарядами. В зависимости от того, какой выходной параметр (сопротивление, емкость или индуктивность) первичного преобразователя «реагирует» на изменение уровня, электрические уровнемеры подразделяются на такие виды: кондуктометрические, емкостные и вибрационные.

52 Первые промышленные регуляторы были созданы 62 и и. ползуновым (поплавковый регулятор питания котла паровой машины, 1765 г.) и дж. Уаттом (центробежный регулятор скорости паровой машины, 1784 г.). если первые регуляторы непосредственно воздействорали па регулирующий орган, то позднее это прямое, дцрдванпе уступило место непрямому, при котором уро регулировамия вводился усилитель. Это позволило посысить мощность воздействия регулятора и точнее осуществлять процесс регулирования. В 1884 г. был изобретен регулятор непрямого действия, дополненный релейной обратной связью, которая действовала до тех пор, пока наблюдалось отклонение регулируемой величины от нормы. Затем были разработаны сложные системы регулирования многих величии, взаимно связанных через объект регулирования и между собой. Во второй половине xix в. автоматические регуляторы внедряются не только в паровые машины и паровые котлы, но п в компрессорный установки, электрические машины л другио устройства. Появляются автоматические регуляторы; приспосабливающиеся к изменениям окружающей среды. Их назвали самопастраивающимпся системами. Использование электронной техники увеличило точность, гибкость регулирования, расширило области применения автоматических регуляторов.

53 Пневматические и электрические регуляторы

Пневматические и электрические регуляторы предназначены для регулирования уровня давления, температуры, скорости движения рабочей среды. Благодаря тому, что регуляторы оснащены чувствительными элементами – датчиками, они имеют возможность измерять скорость, давление или температуру и проводить регулирование параметров согласно необходимым значениям.Различают регуляторы прямого и непрямого действия. В приборах прямого действия воздействие с датчика переносится непосредственно на объект регулирования, в качестве которого может выступать клапан, заслонка, задвижка без использования промежуточного усиления.В приборах непрямого действия воздействие с датчика первоначально направляется на усилитель, и только после этого подается на привод объекта управления. Использование регуляторов позволяет автоматизировать и механизировать работу оборудования, обеспечивая безопасность и надежность технологических процессов .

Система двоичного счисления С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.

Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными). Всего возможно логических функций и соответствующих им логических элементов, где — основание системы счисления, — число входов (аргументов), — число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.