Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Динамика 1,3,4.doc
Скачиваний:
15
Добавлен:
11.02.2015
Размер:
329.73 Кб
Скачать

Вопрос 2

Поля, работа сил которых не зависит от траектории движения материальной точки и определяется только положением начальной и конечной точек пути называются потенциальными (консервативными).

Для потенциальных сил можно ввести понятие потенциальной энергии П(x,y,z) как работы сил при движении точки из положения M(x,y,z) в фиксированное положение Mo :

ПЭ определена с точностью до константы. При изменении начальной точки потенциальная энергия изменяется как

Чтобы пользоваться ТИКЭ не нужно знать траекторию!

БИЛЕТ 3

Вопрос 1

Кинетической энергией системы называется скалярная величина Т, равная арифметиче­ской сумме кинетических энергий всех точек системы

Кинетическая энергия является характеристикой и поступатель­ного и вращательного движения системы, поэтому теоремой об изме­нении кинетической энергии особенно часто пользуются при решении задач.

Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:

Кинетическая энергия – скалярная и всегда положительная величина.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение. В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки 

или

Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

2. Вращательное движение. Если тело вращается вокруг какой-нибудь оси Оz (см. рис.46), то скорость любой его точки , где - расстояние точки от оси вращения, а w- угло­вая скорость тела. Подставляя это значение и вынося общие множители за скобку, получим:

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z. Таким образом, окончательно найдем:

т. е. кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости. От направления вращения значение Т не зависит.

 

При вращении тела вокруг неподвижной точки кинетическая энергия определяется как (рис.47)

или, окончательно,

,                        

где IxIy, Iz – моменты инерции тела относительно главных осей инерции x1y1z в неподвижной точке О ;  ,  – проекции вектора мгновенной угловой скорости  на эти оси.

3. Плоскопараллельное движение. При этом движе­нии скорости всех точек тела в каждый момент времени распреде­лены так, как если бы тело вращалось вокруг оси, перпендикулярной к плоскости движения и проходящей через мгновенный центр ско­ростей Р (рис.46). Следовательно

,

где - момент инерции тела относительно названной выше оси, w- угловая скорость тела. Величина  в формуле будет перемен­ной, так как положение центра Р при движе­нии тела все время меняется. Введем вместо  постоянный момент инерции , относительно оси, проходящей через центр масс С тела. По теореме Гюйгенса где d=PC. Подставим это выражение для . Учитывая, что точка Р - мгновенный центр скоростей, и, следовательно, , где - скорость центра масс С, окончательно найдем:

.

Следовательно, при плоскопараллельном движении кинетиче­ская энергия тела равна энергии поступательного движения со скоростью центра масс, сло­женной с кинетической энергией вращательного движения вокруг центра масс.

4) Для самого общего случая движения материальной системы кинетическую энергию помогает вычислить теорема Кенига.

Рассмотрим движение материальной системы как сумму двух движений (рис.48). Переносного – поступательного движения вместе с центром масс С и относительного – движения относительно поступательно движущихся вместе с центром масс осей x1y1z1. Тогда скорость точек . Но переносное движение – поступательное. Поэтому переносные скорости всех точек равны, равны . Значит,  и кинетическая энергия будет

По определению центра масс его радиус-вектор в подвижной системе   (центр масс находится в начале координат), значит, и . Производная по времени от этой суммы также равна нулю:

.

Поэтому, окончательно, кинетическая энергия системы

(1)

Кинетическая энергия материальной системы равна сумме кинетической энергии при поступательном движении вместе с центром масс и кинетической энергии ее при движении относительно координатных осей, поступательно движущихся вместе с центром масс.

В общем случае движения тела, которое можно рассматривать как сумму двух движений (переносного – поступательного вместе с центром масс С и относительного – вращения вокруг точки С), по теореме Кенига (1) получим

или   ,

где IxIyIz – главные центральные оси инерции тела.

Если рассмотреть какую-нибудь точку системы с мас­сой , имеющую скорость , то для этой точки будет

,

где  и - элементарные работы действующих на точку внеш­них и внутренних сил. Составляя такие уравнения для каждой из точек системы и складывая их почленно, получим

,

или

.                            (2)

Равенство выражает теорему об изменении кине­тической энергии системы в дифференциальной форме.

Если полученное выражение  отнести к элементарному  промежутку времени, в течение которого произошло рассматриваемое перемещение, можно  получить вторую формулировку для дифференциальной формы теоремы: производная по времени от кинетической энергии механической системы равна сумме мощностей всех внешних ()  и  внутренних () сил, т.е.

.

Дифференциальными формами теоремы об изменении кинетической энергии можно воспользоваться для составления дифференциальных уравнений движения, но это делается достаточно редко, потому что есть более удобные приемы.

Проинтегрировав обе части равенства (2) в пределах, соответствующих перемещению системы из некоторого начального положения, где кинетическая энергия равна , в положение, где значение кинетической энергии становится равным , будем иметь

.

Полученное уравнение выражает теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом пере­мещении всех приложенных к системе внешних и внутренних сил.