Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник для углубленного изучения физики.doc
Скачиваний:
3651
Добавлен:
21.03.2015
Размер:
6.5 Mб
Скачать

Применение жидких кристаллов

Зависимость цвета холестерических жидких кристаллов от температуры используется в медицине. С их помощью можно непосредственно наблюдать распределение температуры по поверхности человеческого тела. Это важно для выявления скрытых под кожей очагов воспалительных процессов. Для исследования изготовляют тонкую полимерную пленку с микроскопическими полостями, заполненными холестериком. Наложение этой пленки на поверхность тела дает цветное изображение распределения температуры. Комнатные термометры на жидких кристаллах содержат слои в форме цифр различных холестериков, каждый из которых устойчив в достаточно узком интервале температур. Высвечивается цифра, соответствующая комнатной температуре.

Наиболее широкое применение жидкие кристаллы получили в буквенно-цифровых индикаторах электронных часов, микрокалькуляторов и т. д. Нужная цифра или буква воспроизводится с помощью комбинации небольших ячеек, выполненных в виде полосок (рис. 8.18). Каждая ячейка заполнена жидким кристаллом и имеет два электрода, на которые можно подавать напряжение. Электрическое поле меняет направление осей молекул, а это в свою очередь изменяет отражающие свойства ячейки. Индикатор работает только при освещении светом от внешнего источника. Индикаторы на жидких кристаллах можно делать чрезвычайно миниатюрными, и они потребляют мало энергии.

Рис. 8.18

В настоящее время жидкие кристаллы начинают применять в различного рода управляемых экранах, оптических затворах и для изготовления плоских телевизионных экранов.

Молекулы жидких кристаллов имеют удлиненную форму и располагаются так, что оси молекул параллельны либо во всем кристалле, либо в определенных его слоях. Широко I применяются оптические свойства жидких кристаллов.

§ 8.5. Дефекты в кристаллах

: Описывая строение кристаллов, мы до сих пор пользовались их идеальными моделями. Отличие реальных кристаллов от идеальных состоит в том, что реальные кристаллы не обладают правильной кристаллической решеткой. В них всегда встречаются нарушения строгой периодичности в расположении атомов. Эти нарушения называют дефектами в кристаллах. Дефекты образуются в процессе роста кристаллов под влиянием теплового движения молекул, механических воздействий, облучения потоками частиц, из-за наличия примесей и пр.

Точечные дефекты

Дефекты, называемые точечными, возникают при замещении одного из атомов кристаллической решетки атомом примеси (рис. 8.19, а), внедрения атома между узлами решетки (рис. 8.19, б) или в результате образования вакансий — отсутствия атома в одном из узлов решетки (рис. 8.19, в).

Рис. 8.19

Наличие точечных дефектов в кристалле сильно влияет на его свойства. Так, примеси в кристаллической решетке германия или кремния, составляющие всего лишь 0,1%, практически мало влияют на структуру кристалла, но очень существенно — в тысячи раз — меняют его электрическое сопротивление. Подробнее об этом будет рассказано в дальнейшем.

Одним из экспериментальных подтверждений наличия точечных дефектов в кристаллах является диффузия. Около 100 лет назад, в 1896 г., английский металлург У. Робертс-Остен проделал такой опыт. Он крепко прижал тонкий золотой диск к отшлифованному торцу цилиндра из чистого свинца и поместил эту пару на 10 дней в печь при температуре 200 °С. Когда отжиг кончился, оказалось, что металлы разъединить уже невозможно. Тогда экспериментатор разрезал составной цилиндр вдоль оси и, рассмотрев срез под микроскопом, убедился, что золото и свинец проникли друг в друга; произошло перемешивание металлов, т. е. диффузия.

Но почему атомы одного металла проникают внутрь другого? Мы уже говорили, что тепловое движение атомов в твердых телах представляет собой малые колебания около положения равновесия — узла кристаллической решетки. Амплитуда этих колебаний много меньше расстояния между узлами. У атома, совершающего такие колебания, нет шансов попасть в соседний узел.

В свете всего сказанного взаимное перемешивание атомов золота и свинца — удивительный факт. Как они это делают? Каков механизм перемешивания атомов?

Ответ на этот вопрос дал один из основоположников физики твердого тела Я. И. Френкель. Основываясь на представлении о точечных дефектах в кристаллах, Френкель предложил два основных механизма диффузии в твердых телах: вакансионный (рис. 8.20, а: атом перемещается, обмениваясь местами с вакансией) и междоузельный (рис. 8.20, б: атом перемещается по междоузлиям). Вторым способом перемещаются маленькие (по размеру) атомы примесей, а первым — все остальные: это самый распространенный механизм диффузии.

Рис. 8.20