Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект_лекций-1(ТЭМС).DOC
Скачиваний:
113
Добавлен:
29.03.2015
Размер:
10.34 Mб
Скачать

Переходный процесс электропривода с двигателем независимого возбуждения при из­менении магнитного потока

Обычно ДНВ работает при ФФн если U=const или U=var. Необходимость ослабления по­тока возникает когда требуется получить скорость, превышающую основную (согласно тре­бованиям технологического процесса ). Если бы поток изменялся мгновенно, то в началь­ный момент времени имел бы место бросок тока и момента, как показано на рисунках =f(Ia) и =f(M) пунктиром . В действительности Физменяется во времени. Поэтому ток якоря и момент двигателя будут изменяться по т.н. динамическим характеристикам (кривая1). Для расчета переходного процесса пренебрегаем индуктивностью якоря LЯ т.к. она мала по сравнению с индуктивностью LВ обмотки возбуждения. Бросок тока и момента будет тем больше, чем быстрее темп изменения Ф. Для получения расчетного выражения воспользуемся уравнением равновесия ЭДС в якорной цепи и уравнением момента.

Выразим коэффициенты “k” через номинальные параметры. Коэффициенты ЭДС

;

1) ; 2)

Определив из второго уравнения IЯ и подставив в первое, а также разделив полученное выражение на , получим

или в относительных единицах

3) , где;

Это уравнение нелинейное и решить его непосредственно нельзя, т.к. =f(t). При небольших пределах изменения Фможно считать, что Физменяется по линейному закону, как показано на графике кривой намагничивания. Линейное изменение потока имеет место в случае, если , т.е. когда цепь машины не насыщена (здесь допускается некоторая погрешность). Закон изменения тока возбуждения при ненасыщенной магнитной цепи можно найти из уравнения равновесия ЭДС для цепи возбуждения

Отсюда , где

При закон изменения потока будет таким же .Это экспонента.

Для расчета строится кривая =f(t) и разбивается на участки постоянной длительности. На каждом участке длительностьюt поток считается постоянным, равным среднему значению . Аналогично скорость двигателя в течении t считаем постоянной и равной среднему значению

Подставив значения ив уравнение 3 , решаем его относительно

Окончательная расчетная формула имеет вид

Расчет кривой скорости ведется с первого участка длительностью t, для которого известна и среднее значение потока. Приращение скорости на первом участке

Начальная скорость на втором участке длительностьюt равна скорости в конце первого участка, т.е. . Аналогично определяется приращение скорости на втором участке и т.д. По рассчитанным приращениям строится кривая =f(t), которая изображена на графике.

Для нахождения закона изменения тока JЯ в переходном режиме разделим обе части уравнения 1 на U

отсюда

Конечное значение тока якоря

Поскольку значения  и  для каждого участка длительностью t известны, можно построить кривую JЯ=f(t). Примерный вид этой кривой при Мc = const приведен на рис.

Закон изменения момента находится аналогично согласно уравнению движения

Если бросок тока при ослаблении  окажется недопустимым по условиям коммутации, изменение  следует осуществлять в несколько ступеней.

Расчет переходного процесса можно вести и в именованных величинах. Расчетное выражение для определения приращения скорости можно получить аналогично изложенному выше. Оно имеет вид

Расчет переходного процесса при усилении  производится аналогично, только кривая =f(t) будет выглядеть так, как изображена на следующем рис.