Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций_Часть I(ФХ).doc
Скачиваний:
328
Добавлен:
02.04.2015
Размер:
1.33 Mб
Скачать

Термодинамика гальванического элемента

Рассмотрим окислительно-восстановительную реакцию, протекающую в гальваническом элементе:

аА + bВ  сС + dD

При проведении данной реакции в условиях, максимально приближенных к обратимым можно экспериментально определить многие термодинамические характеристики данного процесса. Для того чтобы процесс протекал обратимо, он должен идти с бесконечно малой скоростью через бесконечно большое число стадий. Этого можно достигнуть, увеличив сопротивление проводника, соединяющего электроды. В этом случае реакция будет протекать медленно, а процесс будет приближаться к обратимому.

В обратимом процессе совершается максимальная электрическая работа, которая при р, Т = const равна убыли свободной энергии Гиббса:

,

с другой стороны в соответствии с законом Фарадея электрическая работа равна

,

Где z – число электронов, принимающих участие в реакции;

E – ЭДС гальванического элемента;

F – число фарадея.

Согласно уравнению изотермы химической реакции:

,

где Ка константа равновесия реакции;

- неравновесные активности реагентов.

Тогда

С учетом этого решим уравнение относительно Е:

.

Обозначим первое слагаемое в уравнении через Е0:

,

тогда получаем

уравнение Нернста для ЭДС гальванического элемента,

где Е0 – стандартная ЭДС гальванического элемента, то есть значение ЭДС цепи при равенстве единице термодинамических активностей ионов и молекул, принимающих участие в химической реакции, лежащей в основе работы данного элемента.

На основе измерения ЭДС при различных температурах можно рассчитать изменение термодинамических функций для реакции, лежащей в основе работы элемента.

Константа равновесия реакции равна

.

Изменение энергии Гиббса равно

.

Если измерить ЭДС при нескольких температурах, то можно определить производную и можно рассчитать изменение энтропии:

и энтальпии

Основные типы электродов и расчет их потенциала

Различают следующие типы электродов

1) Электроды I рода – металлические, представляющие собой металл, погруженный в раствор соли металла: Ме/Ме+z

Реакции, протекающие на электродах, принято записывать так, чтобы в левой части уравнения находились окисленные формы реагирующих веществ, а в правой – восстановленные. В основе работы электрода I рода лежит реакция:

.

Применим уравнение Нернста для расчета потенциала электрода:

.

В электрохимии стандартные состояния выбирают таким образом, что активность нейтральных металлов равна единице: , тогда

.

Потенциал электрода I рода определяется термодинамической активностью ионов данного металла в растворе, поэтому электроды I рода обратимы относительно катиона. К электродам I рода относятся цинковый, медный электроды и т.д.

2) Электроды II рода представляют собой металлическую пластину, покрытую слоем труднорастворимой соли данного металла и погруженную в раствор, содержащий анионы труднорастворимой соли: Ме, MeAn/An-z

В основе работы электрода II рода лежит реакция:

.

Применяя уравнение Нернста с учетом выбранного стандартного состояния, получаем:

Электроды II обратимы относительно аниона. Основными представителями электродов II рода являются хлорсеребряный и каломельный электроды, которые на практике часто применяют в качестве электродов сравнения, в частности при измерении рН растворов.

3) Газовые электроды – электроды, состоящие из инертного металла, контактирующего одновременно с газом и раствором, содержащим ионы газообразного вещества. Типичным представителем газовых электродов является водородный электрод, представляющий собой платиновую пластинку, покрытую слоем электролитической платины для обеспечения достаточной площади поверхности и опущенную в раствор, содержащий ионы водорода, при этом через раствор непрерывно пропускается газ, содержащий молекулярный водород.

В основе работы водородного электрода лежит реакция:

.

Применим уравнение Нернста:

.

Если принять, что активность молекулярного водорода равна парциальному давлению, то

.

Если , то такой электрод является стандартным и его потенциал равен нулю:

4) Амальгамные электроды представляют собой металлическую пластину, покрытую слоем амальгамного металла (т.е. раствора данного металла в ртути) и опущенную в раствор, содержащий ионы данного металла: Ме, Ме(Hg)/Me+z.

В основе работы амальгамного электрода лежит реакция:

Уравнение для расчета потенциала амальгамного электрода имеет вид:

.

5)Электроды III рода или окислительно-восстановительные электроды, представляют собой пластину из инертного металла, например, платины, погруженную в раствор, содержащий окисленные и восстановленные формы веществ (ионов или молекул). Характерной особенностью таких электродов является то, что процесс окисления-восстановления протекает в растворе без участия вещества самого металлического электрода, который играет роль проводника электрического тока: Pt/Ox, Red.

Например, ферро-ферри электрод: Pt/Fe3+, Fe2+

В основе работы такого электрода лежит реакция:

Уравнение для расчета потенциала электрода имеет вид:

.