Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
h-03 / пособие `Химия` ч.2 2010.doc
Скачиваний:
250
Добавлен:
10.04.2015
Размер:
1.53 Mб
Скачать

Лабораторная работа «электролиз»

Цель работы:  Исследование процессов, протекающих на электродах при электролизе водных растворов кислот и солей.

1. Теоретическая часть

1.1. Сущность электролиза

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов.

Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод, а к положительному полюсу — анод, после чего погружают их в электролизер с раствором или расплавом.

На поверхности электрода, подключенного к отрицательному полюсу источника постоянного тока (катоде), ионы, молекулы или атомы присоединяют электроны, т.е. протекает реакция электрохимического восстановления. На положительном электроде (аноде) происходит отдача электронов, т.е. реакция окисления. Таким образом, сущность электролиза состоит в том, что на катоде происходит процесс восстановления, а на аноде — процесс окисления.

Минимальное напряжение электролитического тока, приложенное к электродам, при котором начинается электролиз вещества, называется его потенциалом разложения.

1.2. Электролиз расплава

В расплавах различных электролитов имеются разноименные по знаку ионы, т.е. катионы и анионы, которые находятся в хаотическом движении. Но если в такой расплав электролита, например, расплав хлорида натрия NaCl, опустить электроды и пропускать постоянный электрический ток, то катионы Na+ будут двигаться к катоду, а анионы Cl к аноду. На катоде электролизера происходит процесс восстановления катионов Na+ электронами внешнего источника тока:

Na+ + ē → Na0.

На аноде идет процесс окисления анионов хлора, причем отрыв избыточных электронов от Clосуществляется за счет энергии внешнего источника тока:

Clē → Cl0.

Выделяющиеся электронейтральные атомы хлора соединяются между собой, образуя молекулярный хлор, который выделяется на аноде:

Cl + Cl → Cl2↑.

Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl → 2Na0 + Cl20↑.

Если электролизу подвергается расплав, который содержит несколько различных катионов металлов, то в этом случае последовательность восстановления определяется электродными потенциалами металлов в данных условиях. При этом в первую очередь восстанавливаются катионы металлов, обладающих бо́льшим значением электродного потенциала.

1.3. Электролиз водных растворов

Более сложные процессы электролиза протекают в водных растворах электролитов. Во многих случаях в электролите присутствуют несколько видов катионов и анионов; кроме того, молекулы воды также могут подвергаться электрохимическому окислению или восстановлению. Какие именно электрохимические процессы будут протекать у электродов при электролизе, прежде всего будет зависеть от соотношения значений электродных потенциалов соответствующих электрохимических систем (см. табл. 1 и 2). Из нескольких возможных процессов будет протекать тот, осуществление которого сопряжено с минимальной затратой энергии. Это означает, что на аноде легче окисляются те атомы, молекулы и ионы, потенциалы которых наиболее электроотрицательные (наиболее низкие), а восстанавливаются на катоде легче те атомы, молекулы и ионы, потенциалы которых наиболее электроположительные (наиболее высокие).

Катодные процессы.

При рассмотрении катодных процессов, протекающих при электролизе водных растворов, следует учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит от концентрации ионов водорода и в случае нейтральных растворов имеет значение E= – 0,41 B. По отношению к этому значению все металлы ряда напряжений делят на три группы:

1. Если катионом электролита является металл, имеющий потенциал значительно более электроотрицательный, чем потенциал водородного электрода Е < – 0,41 B, металл восстанавливаться не будет, а произойдет выделение водорода. К таким металлам относятся металлы начала ряда напряжений — щелочные и щелочноземельные металлы: K+, Na+, Mg2+, Al3+ до Ti3+.

2. Если катионом электролита является металл, потенциал которого близок к величине – 0,41 В (металлы средней части ряда от Mn2+ до H+, то в зависимости от концентрации раствора и условий электролиза возможно как восстановление металла, так и выделение водорода.

3. Если катионом электролита является металл, электродный потенциал которого значительно положительнее, чем потенциал водородного электрода, то на катоде будет восстанавливаться только металл. К таким металлам относятся металлы, стоящие в ряду напряжений после водорода: Cu2+, Ag+, Au+.

Электрохимическое выделение водорода из кислых растворов происходит вследствие разряда ионов водорода. В случае же нейтральных или щелочных сред оно является результатом электрохимического восстановления воды:

2H2O + 2ē → H2↑ + 2OH.

Анодные процессы

При рассмотрении анодных процессов следует иметь в виду, что материал анода в ходе электролиза может окисляться. В связи с этим различают электролиз с инертным (нерастворимым) анодом и электролиз с активным (растворимым) анодом.

Анод инертный. В качестве материалов для инертных анодов чаще всего применяют графит, платину, иридий. На инертном аноде при электролизе водных растворов щелочей, кислородосодержащих кислот и их солей, а также фтористоводородной кислоты и фторидов происходит электрохимическое окисление воды с выделением газообразного кислорода. В зависимости от рН раствора этот процесс протекает по-разному и может быть записан различными уравнениями. В щелочной среде уравнение имеет вид:

4OH – 4ē → O2↑ + 2H2O,

а в кислой или нейтральной среде:

2H2O – 4ē → O2↑ + 4H+.

Кислородосодержащие анионы или не способны окисляться, или их окисление происходит при очень высоких потенциалах, например, при потенциале окисления сульфат-аниона E0 = 2,01 B:

2SO42– –2ē → S2O8,

что значительно превышает стандартный потенциал окисления воды (1,228 В).

При электролизе водных растворов бескислородных кислот и их солей (кроме HF и фторидов) на аноде разряжаются анионы. В частности, при электролизе растворов HCl, HBr, HI и их солей у анода выделяется соответствующий галоген.

Анод активный. В случае активного анода число конкурирующих окислительных процессов возрастает до трех: электрохимическое окисление воды с выделением кислорода, разряд аниона и электрохимическое окисление металла анода. Из этих возможных процессов будет идти тот, который энергетически наиболее выгоден. Если металл анода расположен в ряду стандартных электродных потенциалов раньше обеих других электрохимических систем, то будет наблюдаться анодное растворение металла, т.е. переход в раствор в виде ионов (см. далее пример 3).