Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
h-03 / пособие `Химия` ч.2 2010.doc
Скачиваний:
250
Добавлен:
10.04.2015
Размер:
1.53 Mб
Скачать

1.8. Направление и полнота протекания окислительно-восстановительных реакций

Как следует из вышеизложенного материала, каждая окислительно-восстановительная реакция слагается из полуреакций окисления и восстановления, и возможность прохождения каждой из этих полуреакций определяется тем, что некоторый атом или ион может существовать в двух формах: окисленной и восстановленной. Например, Fe+2 является восстановленной формой по отношению к Fe+3 и, в то же время, окисленной по отношению к металлическому железу Fe. Говорят, что образуются окислительно-восстано­вительные системы или окислительно-восстановительные пары Fe+3/Fe+2 и Fe+2/Fe, в которых, соответственно, протекают обратимые процессы:

Fe+3 + ē Fe+2;

Fe+2 + 2ē Fe.

Реакцию, происходящую в системе, принято записывать как процесс восстановления, независимо от того, в какую сторону в действительности протекает процесс.

Переход из одной формы в другую вызывают пространственное разделение электрических зарядов и, следовательно, вызывает появление разности потенциалов. Разность потенциалов, образующуюся при протекании записанного процесса восстановления, обозначают E и называют окислительно-восстановительным потенциалом. Используют также термин электродный потенциал, поскольку при протекании реакции в гальваническом элементе или в ходе электролиза (см. далее работы «Гальванический элемент» и «Электролиз»), каждая полуреакция протекает на соответствующем электроде, т.е. может быть названа электродным процессом.

Величина окислительно-восстановительного потенциала характеризует окислительно-восстановительную способность данной пары (системы). Говоря о величине E системы, всегда указывают, в результате взаимного перехода каких двух форм он возникает. В общем случае окисленная форма обозначается символом Ох (oxidated), а восстановленная — Red (reduced — см. пояснение в разделе 1.2.):

Ох + nē Red.

В индексе при обозначении электродного потенциала формула окисленной формы указывается в числителе, а восстановленной— в знаменателе:

ЕOx/Red .

Например, для окислительно-восстановительной системы двухвалентное железо — трехвалентное железо:

ЕFe3+/Fe2+ .

Значение окислительно-восстановительного потенциала, измеренное в стандартных условиях (25 °C, т.е 298 К, и давление 1 атм) при условии, что концентрации обеих форм равны 1 моль/л, называется стандартным окислительно-восстановительным потенциалом данной системы и обозначается Е0Ox/Red .Значения стандартных потенциалов для различных окислительно-вос­становительных систем приведены в табл. 1.

В условиях, отличных от стандартных, окислительно-восстановитель­ный потенциал системы вычисляется по формуле Нернста:

ЕOx/Red = Е0Ox/Red + ln ,

где Т — абсолютная температура (273 + t), К; F — число Фарадея, n — число электронов, участвующих в реакции окисления-восстанов­ления; [Ох] — концентрация окисленной формы; [Red] — концентрация восстановленной формы; R — универсальная газовая постоянная (8,314 Дж/моль град).

Таким образом, физический смысл величины Е0 — это окислительно-восстановительный потенциал системы при стандартных условиях и при концентрациях всех участвующих в процессе веществ, равных единице; тогда:

ЕOx/Red = Е0Ox/Red .

Если в формулу Нернста подставить значения физико-химических констант R и F и перейти от натурального логарифма к десятичному (lna =2,303lga), то для температуры 25°С (298 К) получим выражение:

ЕOx/Red = Е0Ox/Red + lg.

Поскольку окислительно-восстановительный потенциал служит мерой окислительной (и восстановительной) способности окислительно-восстановительной системы, то, сравнивая величины E двух систем, можно определить направление протекания окислительно-восстановительной реакции. Пользуются правилом, что та окислительно-восстановительная пара, потенциал которой выше, выступает в роли системы-окислителя. При этом получается, что условием протекания реакции является положительное значение ЭДС образующегося при реакции гальванического элемента:

ЭДС = E = EокислителяEвосстановителя .

  1. Таблица

Стандартные электродные потенциалы Е0 в водных растворах при 25 °C

Элемент

Электродный процесс

Е0, В

Ag

Ag+ + ē → Ag0

+0,80

Al

Al3+ + 3ē → Al0

–1,66

Au

Au3+ + 3ē → Au0

Au+ + ē → Au0

+1,50

+1,69

Ba

Ba2+ + 2ē → Ba0

–2,90

Bi

Bi3+ + 3ē → Bi0

+0,21

Br

Br2 + 2ē → 2Br

+1,07

Ca

Ca2+ + 2ē → Ca0

–2,87

Cd

Cd2+ + 2ē → Cd0

–0,40

Cl

Cl2 + 2ē → 2Cl

+1,36

Co

Co2+ + 2ē → Co0

Co3+ + ē → Co2+

–0,28

+1,81

Cr

Cr3+ + 3ē → Cr0

–0,74

Cu

Cu2+ + ē → Cu+

Cu2+ + 2ē → Cu0

Cu+ + ē → Cu0

+0,15

+0,34

+0,52

F

F2 + 2ē → 2F-

2,87

Fe

Fe2+ + 2ē → Fe0

Fe3+ + 3ē → Fe0

Fe3+ + ē → Fe2+

–0,44

–0,04

+0,77

H

2H+ + 2ē → H2

0,00

Hg

Hg22+ + 2ē → 2Hg0

Hg2+ + 2ē → Hg0

2Hg2+ + 2ē → Hg22+

+0,79

+0,85

+0,92

I

I2 + 2ē → 2I

+0,54

K

K+ + ē → K0

–2,92

Li

Li+ + ē → Li0

–3,04

Mg

Mg2+ + 2ē → Mg0

–2,36

Na

Na+ + ē → Na0

–2,71

Ni

Ni2+ + 2ē → Ni0

–0,25

O

O2 + 2H2O + 4ē → 4OH

O2 + 4H+ + 4ē → 2H2O

+0,40

+1,23

Pb

Pb2+ + 2ē → Pb0

–0,13

Pt

Pt2+ + 2ē → Pt0

+1,19

S

S2O82 + 2ē → 2SO42

+2,01

Sn

Sn2+ + 2ē → Sn0

–0,14

Zn

Zn2+ + 2ē → Zn0

–0,76

Рассмотрим эти положения на примере следующих задач.

Пример 1. В какую сторону пойдет реакция с участием диоксида свинца (РbО2) и иодида калия (KI) в кислой среде, если концентрации веществ равны 1 моль/л?

Уравнение реакции:

2KI + РbО2 + 2H2SO4 I2 + K2SO4 + PbSO4 + 2H2O.

В реакции участвуют две системы, каждая из которых характеризуется своим окислительно-восстановительным потенциалом, равным в данном случае (поскольку С = 1) стандартному окислительно-восстановительному потенциалу (см. табл. 1):

Система 2I/I2 I20 + 2ē → 2I Е02I–/I2 = +0,53 B;

Система PbO2/Pb+2 Pb+4 +2ē → Pb2+ Е0PbO2/Pb+2 = +1,68 B.

Для системы четырех- и двухвалентного свинца потенциал выше, чем для пары 2I/I2, поэтому в данной реакции окислителем является система PbO2/Pb+2. Для свинца процесс будет протекать именно так, как записан в таблице, слева направо, как процесс восстановления. Система 2I/I2 с меньшим потенциалом будет выступать в роли восстановителя, электродный процесс для нее пойдет в обратную сторону, справа налево, как процесс окисления иодид-ионов. В итоге, электронный баланс для реакции:

окисление 2I – 2ē → I20 восстановитель;

восстановление Pb+4 +2ē → Pb+2 окислитель.

Итак, рассматриваемая в задаче реакция идет слева направо. Роль окислителя выполняет свинец со степенью окисления +4, т.е. входящий в состав молекулы РbO2.

Подтверждением возможности протекания реакции также является положительное значение разности окислительно-восстановительных потенциалов систем:

ЭДС = E = 1,68 – 0,53 = 1,15 B.

Пример 2. Будет ли металлическое серебро растворяться в разбавленной серной кислоте?

Уравнение реакции:

Ag + H2SO4 (p-р) Ag2SO4 + H2.

Для ориентировочной оценки возможности протекания реакции можно воспользоваться значениями стандартных окислительно-восстановительных потенциалов участвующих в реакции систем.

Е0Ag+/Ag =+0,799 B; Е0H2/H+ = 0,00 B.

Если предположить, что рассматриваемая реакция возможна, то в роли окислителя должен выступать ион H+. Но тогда

ЭДС = E = 0 – 0,799 = – 0,799 B < 0.

Так как ЭДС имеет отрицательное значение, реакция идти не может, а значит, серебро в разбавленной серной кислоте растворяться не будет. К такому же выводу можно прийти без вычисления ЭДС из того соображения, что по соотношению величин Е0 серебро в реакции должно являться окислителем, а в предложенной к рассмотрению реакции ему отведена роль восстановителя, чего быть не должно.

Если возможно одновременное протекание двух реакций, например, если в процессе конкурируют два восстановителя или два окислителя, следует учитывать, что чем больше величина потенциала окислителя по сравнению с величиной потенциала восстановителя, тем более вероятна возможность протекания процесса. Другими словами, из всех возможных при данных условиях окислительно-восстановительных реакций пойдет та, для которой разность окислительно-восстановительных потенциалов наибольшая. В качестве примера рассмотрим задачу:

Пример 3. Определить, какой из металлов — барий или никель лучше взаимодействует с соляной кислотой.

Уравнения реакций:

Ва + 2HСl = ВаСl2 +H2;

Ni + 2HCl = NiCl2 + Н2.

Находим потенциалы пар:

Е0Ba2+/Ba = – 2,9 В; Е0Ni2+/Ni = – 0,2 В; Е0H2/H+ = 0,00 B.

Вычислим ЭДС для первой и второй реакций:

ЭДС1 = E = 0,00 – (– 2,9) = 2,9 В;

ЭДС2 = E = 0,00 – (– 0,25) = 0,25 B.

ЭДС первой реакции значительно больше чем второй реакции. Следовательно, барий будет взаимодействовать с соляной кислотой более интенсивно, чем никель.

В некоторых случаях нужно знать не только направление окислительно-восстановительной реакции, но и полноту ее протекания. Так, например, в количественном анализе можно использовать только те реакции, которые протекают практически на 100%. Степень полноты протекания реакции определяется величиной константы равновесия К (см. материал работы «Химическое равновесие» в части 1 настоящего Практикума). Преимущественное протекание прямой реакции имеет место при К >> 1. Для реакций, которые представляются нам необратимыми, К составляет 1015…1020 и более.

Величина константы равновесия окислительно-восстановительной реакции может быть вычислена по значению ЭДС реакции. При этом следует учесть, что чем ближе состояние системы химических регентов к состоянию равновесия, тем менее интенсивно протекает реакция, а достижение состояния равновесия означает фактическое прекращение происходившей до того момента прямой реакции. Поэтому в состоянии равновесия электродвижущая сила становится равна нулю, т.е. E = 0. В качестве примера рассмотрим следующую задачу:

Пример 4. Вычислить константу равновесия реакции:

Zn + CuSO4 = Cu + ZnSO4.

Сокращенное ионное уравнение реакции:

Zn0 + Cu2+ = Cu0 + Zn2+.

В реакции участвуют две системы, каждой из которых соответствует свое значение Е0 (см. табл. 1):

система Zn2+/Zn0 Zn2+ + 2ē → Zn0 Е0Zn2+/Zn0 = +0,76 B;

система Сг2+.Сг0 Сг2+ +2ē → Сг0 Е0Сг2+.Сг0 = +0,34 В.

Поскольку концентрации атомов металлов в куске твердого металла постоянны, то в формуле Нернста для каждой из систем под знаком логарифма остается только концентрация ионов в растворе, в данном случае концентрации окисленных форм [Ox]. Концентрации восстановленной формы [Red] каждой пары, т.е. металлических меди и цинка, будучи постоянными величинами, включаются в значение стандартных окислительно-восстановительных потенциалов. Таким образом:

ЕCu2+/Cu = Е0Cu2+/Cu + lg[Cu2+];

ЕZn2+/Zn = Е0Zn2+/Zn + lg[Zn2+].

Также и в выражении для константы равновесия K отсутствуют концентрации металлических меди и цинка, и величина K выражается только через концентрации ионов цинка и меди в растворе:

или .

Подставляем значения стандартных потенциалов пар Zn2+/Zn0 и Cu2+/Cu0 в уравнения для расчета электродных потенциалов:

ЕCu2+/Cu.= +0,34 + lg[Cu2+];

ЕZn2+/Zn.= –0,76 + lg[Zn2+].

В состоянии равновесия:

Е0Cu2+/Cu = Е0Zn2+/Zn ;

+0,34 + lg[Cu2+] = –0,76 + lg[Zn2+];

откуда +0,34 + 0,76 = ln[Zn2+] – ln[Cu2+];

и затем: (lg[Zn2+] – lg[Cu2+]) = 1,01.

Тогда: lg = 1,01;

или lgK = 1,01;

откуда находим:

lgK = = 38.

В итоге К = 1038.

Такое большое значение константы равновесия показывает, что цинк будет восстанавливать из раствора CuSO4 ионы меди до тех пор, пока в растворе концентрация ионов Cu+2 не станет в 1038 раз меньше, чем концентрация ионов Zn+2. Это значит, что рассматриваемая реакция практически идет до конца.

Из приведенного решения следует, что константа равновесия может быть найдена по значениям стандартных окислительно-восстановительных потенциалов по общей формуле (при условии, что в обеих парах число переходящих электронов n одинаково):

lgK =

или K = .

Таким образом, по величине ЭДС окислительно-восстановительной реакции можно через константу равновесия оценить, насколько полно протекает реакция.

В разделе общей химии «Химическая термодинамика» показывается, что константа равновесия и ЭДС реакции связаны через такую величину, как изменение изобарно-изотермического потенциала G реакции в стандартных условиях, которое выражается через упомянутые величины уравнениями:

ΔG0 = – RTlnK и ΔG0 = – nF(Е0окислЕ0Восст).