Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12667_Теор.кодирования (контр. раб.).doc
Скачиваний:
99
Добавлен:
10.04.2015
Размер:
6.58 Mб
Скачать

2.3.5. Кодирующее и декодирующее устройства

Линейные корректирующие коды наиболее часто используются для исправления и обнаружения ошибок в цифровых устройствах обработки и хранения информации, где надежность кодирующих и декодирующих устройств соизмерима с надежностью самого вычислительного канала. В связи с этим кодирующее и декодирующее устройства здесь должны:

  • иметь минимальную сложность;

  • иметь минимальные задержки.

В наиболее полной степени эти требования выполняются при параллельной передаче информации, что в таких системах является приемлемым вследствие сравнительно малых расстояний между взаимодействующими блоками. Именно на этот способ передачи информации и ориентированы рассматриваемые ниже устройства. Схемы построены для контрольной матрицы (2.19).

Кодирующее устройство (кодер).

Кодирующее устройство реализует следующие уравнения для выполнения проверочных символов:

(2.20)

Рис. 2.2. Функциональная схема кодера

На вход кодера подается безизбыточная -значная () комбинация. В кодере с помощью сумматоров по модулю 2 () в соответствии с (2.19) вычисляются контрольные символы,,и присоединяются к информационным. В результате на выходе появляетсяn-значная () комбинация линейного кода. Задержка между моментом появления входной комбинации и окончанием формирования выходной определяется только временем распространения сигнала в одном сумматоре(сумматоры работают параллельно).

Декодирующее устройство (декодер).

Декодер выполняет следующие функции:

  • вычисляет синдром ошибки в принятом КВ;

  • дешифрирует синдром ошибки;

  • инвертирует ошибочный разряд.

Функциональная схема декодера представлена на рис. 2.3.

Рис. 2.3. Функциональная схема декодера

На вход декодера подается подлежащий декодированию КВ.

Схема вычисления синдрома собрана на сумматорах по модулю 2 и реализует следующие уравнения:

(2.21)

Если ошибка отсутствует, вектор синдрома состоит из одних нулей. На всех выходах дешифратора ДШ при этом будут нули.

При наличии ошибки вектор синдрома будет совпадать с одним из столбцов контрольной матрицы (2.19) и 1 появится только на выходе ДШ, соответствующем ошибочному разряду. В целом состояния выходов ДШ определяются следующей таблицей:

Входы

Выходы

1

2

3

4

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

Исправление (инвертирование) искаженного информационного разряда осуществляется с помощью сумматоров по модулю 2 , выполняющих функции управляемых инверторов. Возможность такого использования сумматоров видна из таблицы его состояний:

Вход

Выход

0

1

0

1

0

0

1

1

0

1

1

0

Если рассматривать вход в качестве управляющего, а– информационного, то из таблицы видно, что приинформационный сигнал передается на выход без инверсии, а при– инвертируется. В рассматриваемой схеме декодера роль управляющих сигналов выполняют сигналы, поступающие с выходов ДШ.

Минимальная задержка между моментом появления КВ на входе декодера и моментом, когда исправленная информационная часть КВ может быть передана на обработку, определяется выражением: , где– время распространения сигнала в 4-хвходовом сумматоре ();– время распространения сигнала в ДШ;– время распространения сигнала в 2-хвходовом сумматоре ().

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]