Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат по пб.docx
Скачиваний:
109
Добавлен:
30.04.2015
Размер:
183.92 Кб
Скачать

Федеральное агентство по образованию Государственное образовательное учреждение Высшего профессионального образования «Уральский государственный педагогический университет»

Факультет «Безопасности жизнедеятельности»

Реферат

По дисциплине: Пожарная Безопасность

Тема: Влияние Угарного газа на организм человека

Исполнитель: Радостева АА

студентка БЭ-21

Преподаватель: Луконин ЕВ

Екатеринбург, 2014

Содержание:

  1. Введение

  2. Угарный газ

  3. Взаимодействие угарного газа с другими веществами

  4. Воздействие Фосгена на организм человека

  5. Отравление угарным газом

  6. Причины отравления угарным газом

  7. Признаки отравления угарным газом

  8. Профилактика отравления угарным газом

  9. Оказание первой помощи при отравлении угарным газом

  10. Заключение

  11. Приложение

  12. Список литературы

Введение

Угарный газ (СО) - один из наиболее токсичных компонентов продуктов горения, который входит в состав дыма, и выделяется при тлении и горении почти всех горючих веществ и материалов.

Ввиду своей токсичности угарный газ зачастую наносит крупный вред организму человека и тем обуславливает актуальность сего вопроса. Каждому человеку необходимо знать методы детоксикации после отравления угарным газом, а так же способы предотвращения отравления.

Целью работы выступает рассмотрение воздействия угарного газа и его соединений на организм человека. Для достижения этой цели ставятся задачи: Рассмотреть химическую формулу угарного газа и его соединений, указать наиболее частые причины отравления, способы детоксикации и оказания первой медицинской помощи, а так же методы профилактики во избежание отравления.

Угарный газ

Монооксид углерода или угарный газ это бесцветный ядовитый газ (при нормальных условиях) без вкуса и запаха. Химическая формула — CO.

Молекула CO имеет тройную связь, как и молекула азота. Так как эти молекулы сходны по строению, то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

Благодаря наличию тройной связи молекула CO весьма прочна и имеет малое межъядерное расстояние.

Оксид углерода(II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Основными типами химических реакций, в которых участвует оксид углерода(II), являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах. 

Температура горения CO может достигать 2100 °C. Реакция горения является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (например генераторный газ), используемых, в том числе, для отопления. В смеси с воздухом взрывоопасен; нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму).

Оксид углерода(II) был впервые получен французским химиком Жаком де Лассоном в 1776 при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.

То, что в состав этого газа входит углерод и кислород, выяснил в 1800 английский химик Вильям Крюйкшенк. Токсичность газа была исследована в 1846 году французским медиком Клодом Бернаром в опытах на собаках.

Оксид углерода(II) вне атмосферы Земли впервые был обнаружен бельгийским учёным М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК-спектре Солнца. Оксид углерода(II) в межзвёздной среде был обнаружен в 1970 г.

Взаимодействие угарного газа с другими веществами

Основными типами химических реакций, в которых участвует оксид углерода(II), являются реакции присоединения иокислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах. Так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже.

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830 °C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции

до 830 °C смещено вправо, выше 830 °C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Оксид углерода(II) горит пламенем синего цвета (температура начала реакции 700 °C) на воздухе:

 (ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K).

Температура горения CO может достигать 2100 °C. Реакция горения является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления. В смеси с воздухом взрывоопасен; нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму).

Оксид углерода(II) реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F2, кроме карбонилфторида COF2, можно получить перекисное соединение (FCO)2O2. Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:

Оксид углерода(II) реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

 (ΔG°298 = −229 кДж, ΔS°298 = −134 Дж/K).

Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.

Восстанавливает SO2:

C переходными металлами образует горючие и ядовитые соединения — Карбонилы, такие как Cr(CO)6, Ni(CO)4, Mn2CO10, Co2(CO)9 и др. Некоторые из них летучие.

Оксид углерода(II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако реагирует с расплавами щелочей с образованием соответствующих формиатов:

Интересна реакция оксида углерода(II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение —циановодород HCN. Реакция идёт в присутствии катализатора (диоксид тория ThO2) по уравнению:

Важнейшим свойством оксида углерода(II) является его способность реагировать с водородом с образованием органических соединений:

 спирты + линейные алканы.

Этот процесс является источником производства таких важнейших промышленных продуктов как метанол, синтетическое дизельное топливо, многоатомные спирты, масла и смазки.