Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
практика 5к.docx
Скачиваний:
46
Добавлен:
09.05.2015
Размер:
219.36 Кб
Скачать

Технология LTE – это основное направление эволюции сетей сотовой связи третьего поколения (3G). В январе 2008 г. международное объединение Third Generation Partnership Project (3GPP), разрабатывающее перспективные стандарты мобильной связи, утвердило LTE в качестве следующего после UMTS стандарта широкополосной сети мобильной связи.

Международный союз электросвязи выбрал в качестве стандартов беспроводной широкополосной связи четвёртого поколения (4G) две технологии — LTE-Advanced и WirelessMAN-Advanced (базируется на стандарте WiMAX). В соответствии с критериями, определёнными экспертами, стандартом беспроводной связи четвёртого поколения могут считаться технологии, обеспечивающие пиковую скорость передачи данных 100 Мбит/с в движении и 1 Гбит/с при стационарном использовании. Развёрнутые LTE- и WiMAX-сети, которые в маркетинговых целях часто относят к 4G, не соответствуют обнародованным ITU требованиям (их пропускная способность примерно в три раза ниже установленных критериев).

LTE обеспечивает теоретическую пиковую скорость передачи данных до 326,4 Мбит/с от базовой станции к пользователю (де-факто 5-10 Мбит/с) и до 172,8 Мбит/с в обратном направлении. Для сравнения, сети второго поколения (2G) теоретически способны обеспечить пиковую скорость передачи данных с помощью технологии GPRS 56-114 Кбит/с, а помощью EDGE до 473,6 Кбит/с. Сети третьего поколения (3G) обеспечивают скорость передачи данных до 3,6 Мбит/с.

Одним из компонентов LTE-сети является сеть на базе IP, которая обеспечивает высокоскоростную передачу данных. Основным достоинством LTE является то, что она строится на базе существующего оборудования со сравнительно легкой интеграцией GSM и WCDMA, иными словами, LTE-сеть поддерживает существующие абонентские устройства 2G и 3G. Этого лишены сети WiMAX, которые также относятся к четвертому поколению.

1. Особенности технологии

Радиус действия базовой станции LTE зависит от мощности и используемых частот. В оптимальном случае — это порядка 5 км, но при необходимости он может составлять до 30 км или даже 100 км (при достаточном поднятии антенны).

Звонок или сеанс передачи данных, инициированный в зоне покрытия LTE, технически может быть передан без разрыва в сеть 3G (WCDMA), CDMA2000 или в GSM/GPRS/EDGE.

2. Цели разработки LTE

  • увеличение скорости передачи данных;

  • снижение стоимости передачи данных;

  • возможность предоставления большего спектра услуг по более низкой цене;

  • повышение гибкости использования уже существующих систем

Основная цель любого оператора связи – наращивание скорости передачи данных, поскольку все остальное, в значительной степени, является следствием решения этой задачи. Внедрение LTE  обеспечивает возможность создания высокоскоростных систем сотовой связи, оптимизированных для пакетной передачи данных со скоростью до 300 Мбит/с в нисходящем канале (от базовой станции к пользователю)  и до 75 Мбит/с в восходящем канале. Пиковые скорости передачи данных в ранних реализациях должны составлять более 100 Мбит/с в нисходящем канале и более 50 Мбит/с в направлении от пользователя. Реализация LTE возможна в различных частотных диапазонах – от 1.4 МГц до 20 МГц, а также по различным технологиям разделения – FDD (частотное) и TDD (временное).

Для реализации скоростей до 326.4 Мбит/с планируется использовать технологию MIMO в конфигурации антенн 4×4. В конфигурации 2×2 предельные скорости “вниз” могут достигать 172.8 Мбит/с (в каждой частотной полосе 20 МГц). Пиковая скорость в направлении “вверх” может достигать 86.4 Мбит/с на каждую полосу в 20 МГц.

LTE лучше использует частотный спектр, отличается повышенной емкостью и меньшими значениями задержки (latency), которая для небольших пакетов может снижаться до значения всего в 5 мс. Увеличение скорости передачи данных способствует повышению качества предоставляемых услуг, ускоряет распространение новых мультимедийных сервисов (многопользовательские игры, социальные сети, видеоконференции, системы мониторинга и М2М, интерактивные он-лайн приложения и др.). Еще одно преимущество – в отличие от WCDMA (требующей полосы в 5 МГц), LTE способна работать с различными полосами частот – от 1.5 МГц до 20 МГц.

Внедрение технологии LTE позволяет операторам уменьшить капитальные и операционные затраты, снизить совокупную стоимость владения сетью, расширить свои возможности в области конвергенции услуг и технологий, повысить доходы от предоставления услуг передачи данных. Сеть поддерживает MBSFN (Multicast Droadcast Single Frequency Network), что позволяет внедрять такие услуги, как мобильное ТВ в противовес DVB-H.

Экосистема LTE - Устройства - Подсистема агрегации (транспорт) - Пакетное ядро EPC - Подсистема радиодоступа LTE  

Особенности экосистемы: беспроводный доступ нового поколения; скоростная и эффективная IP-сеть; интеграция с существующей сетью; открытость.

Возможности, обеспечиваемые LTE  - Высокая пропускная способность сети;  - Большая чувствительность;  - Поддержка игровых приложений за счет низкого времени отклика;  - Высокая интерактивность;  - Более высокая скорость загрузки данных;  - Возможность передачи голоса по IP/IMS;  - Более высокое качество обслуживания;  - Больше каналов мобильного ТВ;  - Лучше качество изображения мобильного ТВ;  - OFDMA на линии от базовой станции с модулацией 64QAM;  - Полностью IP e2e сеть;  - Ширина канала до 20 МГц;  - И TDD, и FDD профили;  - Гибкая сеть доступа;  - Улучшенная техника антенн;  На линии к базе одна несущая с частотным доступом (SC-FDMA), модуляция опционально до 64QAM

Варианты сосуществования сети LTE и сетей предыдущих поколений

Наилучшим вариантом для тех операторов, которые уже располагают построенными сетями 2G и/или 3G/UMTS (WCDMA или CDMA2000), является построение конвергентной сети 2G/3G/LTE с единым управлением и поддержкой плавных хендоверов без прерывания сервисов. Для построения такой сети должны быть доступны в конвергентном варианте все основные составляющие сети: - конвергентные мультисандартные BTS; - конвергентная транспортная сеть; - конвергентный O&M; - конвергентные услуги

Физический уровень LTE

К физическому уровню LTE предъявляются самые высокие требования: скорость передачи 100 Мбит/с в нисходящем канале и 50 Мбит/с в восходящем, эффективное использование спектра, несколько частотных каналов на полосе 1,25…20 МГц. Для выполнения этих требований была выбрана технология мультиплексирования с ортогональным частотным разделением сигналов (OFDM). Кроме того, в сетях LTE используется «принцип много входов — много выходов» (MIMO), который позволяет увеличить емкость канала (пространственное мультиплексирование) и повысить надежность сигнала.

Вместе эти две технологии отличают LTE от сетей 3G, основанных на множественном доступе с кодовым разделением (CDMA). Поскольку все аспекты физического уровня LTE охватить в одной статье нельзя, мы будем рассматривать принцип работы в частотной области (FDD).

Методы множественного доступа

В нисходящем канале применяется принцип мультиплексирования с ортогональным частотным разделением сигналов (OFDM). Он заключается в том, что весь доступный частотный диапазон делится на несколько тысяч поднесущих, по которым данные передаются параллельно. Ортогональность частот обеспечивает отсутствие межсимвольной интерференции. За счет разделения канала на узкие полосы передаваемый сигнал затухает плавно, что позволяет отказаться от использования сложных частотных корректоров. Системы связи, основанные на OFDM, должны быть строго линейными, чтобы не нарушалась ортогональность передаваемых сигналов.

Каждому передатчику выделяются определенные полосы спектра так, чтобы снизить уровень шумов и избежать возникновения интерференционных помех. Исходный поток последовательных данных преобразуется в параллельный, причем скорость передачи в каждом канале уменьшается пропорционально количеству каналов. В итоге скорость передачи всего потока не меняется, однако увеличивается время передачи каждого бита, за счет чего уменьшается вероятность появления ошибки и искажений.

Информационные символы модулируются и комбинируются в передатчике блоком обратного быстрого преобразования Фурье (БПФ). В приемнике производится восстановление потока данных (прямое БПФ).

Обычно в канале присутствует временная дисперсия — части передаваемого сигнала принимаются с различными задержками из-за многолучевости распространения и отражений. В итоге ортогональность частично теряется, появляется интерференция как между битами внутри символа, так и между символами. Для предотвращения перекрытия в начало OFDM-символа вставляется циклический префикс Tg, содержащий конечные биты предыдущего символа. При этом общая длина символа равна Ts = Tu + Tg, где Tu — «полезная» длина OFDM-символа.

Достоинства технологии OFDM:

1. Нечувствительность к многолучевости распространения сигнала и слабая интерференция в канале.

2. Отсутствие интерференции между ячейками сети.

3. Гибкое использование частотного спектра.

4. Эффективное использования спектра за счет ортогональности поднесущих.

5. Оптимальная скорость передачи данных для всех абонентов ячейки (для передачи выбирается наиболее подходящая поднесущая со слабым замиранием).

Несмотря на бесспорные достоинства OFDM-технологии, у нее имеется ряд недостатков. Во-первых, большая чувствительность к нестабильности частоты, которая может возникнуть из-за неидеальности схемы или эффекта Доплера, если устройство подвижно. Во-вторых, высокое отношение пиковой мощности к средней, обусловленное непоследовательным добавлением поднесущих, которое расширяет спектр сигнала и, соответственно, вызывает интерференцию в канале. Эта проблема решается применением УМ с высокой точкой компрессии и методов линеаризации АЧХ-усилителя. Однако эти меры применимы только на базовых станциях, поскольку для абонентского оборудования они неоправданно дороги.

В восходящем канале используется множественный доступ с частотным разделением на базе одной несущей (Single Carrier Frequency Division Multiple Access, SC-FDMA) с циклическим префиксом, чтобы снизить отношение пиковой мощности к средней. Низкие значения PARP, кроме того, улучшают покрытие и производительность ячейки.

Технология SC-OFDMA реализуется в LTE с помощью дискретного преобразования Фурье (DFTS-OFDM — Discrete Fourier Transform Spread OFDM), которое часто называют обобщением SC-FDMA в частотной области. Дискретное преобразование Фурье используется для мультиплексирования восходящих передач в отдельные частотные блоки, на которые разбивается полоса пропускания. Занимаемая одной несущей полоса определяется на основе требуемой скорости передачи. Данные остаются последовательными и не распараллеливаются, как это происходит в нисходящем канале. В итоге параметры соединения становятся одинаковыми в обоих направлениях. Однако в восходящем канале наблюдается довольно сильная межсимвольная интерференция, которая легко корректируется эквалайзером. Сигнал SC-FDMA лишен недостатков OFDM.

Рис.1 сравнение OFDMA и SC-FDMA

Во временной области все промежутки времени выражаются через базовый интервал Ts = 1/30720000. Длительность пакета равна 10 мс (Tframe = 307200 Ts). Каждый пакет разделен на 10 одинаковых субкадров длительностью 1 мс (Tsubframe = 30720 Ts). В свою очередь, субкадр состоит из двух слотов по 0,5 мс (Tslot = 15360 Ts), содержащих 7 или 6 символов OFDM в зависимости от типа циклического префикса (нормальный или расширенный).

Стандарт LTE предусматривает два типа радиокадров — для частотного (FDD) и временного дуплексирования (TDD).

TDD - Дуплексная передача с мультиплексированием во времени

Технология построения сетей беспроводной связи поколения, следующего за 3G, на базе IP-технологий, отличающаяся высокими скоростями передачи данных.

LTE может использоваться, как в парных (FDD), так и в непарных (TDD) участках спектра. Первые релизы продукта от лидирующих поставщиков будут обеспечивать поддержку обеих дуплексных схем. В целом, FDD - обеспечивает большую эффективность и представляет более более высокий потенциал использования устройств и инфраструктуры, тогда как TDD может выполнять роль хорошего дополнения, например, для заполнения пробелов в сети.

Поскольку оборудование LTE практически идентично для случаев FDD и TDD (кроме фильтров), операторы которые начнут с сооружения сетей TDD, смогут впоследствие воспользоваться эффектом экономии на масштабе, который обеспечит широкое распространение продуктов FDD.

 

Факты о FDD и TDD

До 2011 года все сотовые системы связи сегодня использовали FDD, и более 90% частот, используемых системами мобильной связи во всем мире - это парные наборы полос частот. В случае FDD, трафик вниз и вверх обеспечивается одновременно в различных частотных диапазонах. В системах TDD, передача в канале вверх и вниз не ведется непрерывно, что позволяет использовать для организации канала один и тот же частотный диапазон. Например, если разделить время между передачей вверх и вниз в соотношении 1:1, то направление вверх будет использоваться лишь половину времени. Средняя мощность, для каждого сеанса связи, также оказывается равна половине пиковой мощности. Поскольку пиковая мощность ограничена регулятором, то в результате получается, что для той же пиковой можности, TDD обеспечивает меньшее покрытие, нежели FDD.

Рис 2 сравнение FDD и TDD

Более того, операторы зачастую хотели бы выделить более, чем половину своих ресурсов для организации канала вниз (чтобы повысить пиковую скорость в этом направлении). Если соотношение DL/UL равно 3:1, то для реализации сети TDD потребуется на 120% больше сайтов, нежели для реализации сети FDD.

LTE Advanced — стандарт мобильной связи. LTE Advanced стандартизирован 3GPP как главное улучшение стандарта Long Term Evolution (LTE).

Официально представлен в конце 2009 года сектору стандартизации электросвязи Международного союза электросвязи в качестве кандидата на систему 4G. LTE Advanced был утверждён ITU и завершён 3GPP в марте 2011 года.

Технология LTE-Advanced вместе с WiMAX 2 была официально признана беспроводным стандартом связи четвёртого поколения 4G Международным союзом электросвязи на конференции в Женеве в 2012 году.

LTE-Advanced — это название спецификации 3GPP 10 версии, которым Международный союз электросвязи присвоил сертификат «IMT-Advanced» — официальный статус сетей четвёртого поколения. Предыдущие версии LTE не являются технологией 4G.

Технология LTE пережила целый ряд этапов развития с момента выхода первоначального стандарта, принятого консорциумом 3GPP — так называемого 3GPP Релиза 8. Для дальнейшего улучшения эксплуатационных характеристик и расширения возможностей технологии в апреле 2008 года консорциум 3GPP начал работу над Релизом 10. Одной из задач было достижение полного соответствия технологии LTE требованиям стандарта IMT-Advanced, установленного для 4G Международным союзом электросвязи, что позволило бы с полным правом называть LTE технологией 4G.

Технология новая, и производители не всегда успевают дойти до нужного уровня. Сегодня в полной мере воспользоваться благами LTE Advanced можно только со стационарным роутером MegaFon Space R300-1, изготовленным корпорацией Huawei по заказу МегаФона. Тот самый роутер, который легко обеспечит качественным интернет-подключением всех работников офиса. У этого профессионального роутера есть даже гнёзда для кабельного подключения компьютеров, если это еще кому-нибудь понадобится.

В LTE-Advanced особое внимание уделяется более высокой мощности: движущей силой для дальнейшего развития LTE к LTE-Advanced - LTE Release10 стало обеспечение более высоких битрейтов в экономически эффективным образом и, в то же время, полностью отвечает требованиям, установленным МСЭ для IMT. Также упоминается как 4G.