Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
44
Добавлен:
16.05.2015
Размер:
676.35 Кб
Скачать

54.Изменчивость, ее формы . Мутации, мутационная изменчивость, ее роль в эволюции органического мира.

Мутацией называется изменение структуры или количества ДНК данного организма, приводящее к изменению генотипа. Любые мутации имеют неопределенный, случайный характер по отношению к вызывающим их изменениям внешней среды. Сколько-нибудь существенные эволюционные преобразования организмов не могут быть достигнуты посредством одной мутации, а достигаются серией малых мутаций. Мутации позволяют выживать виду при значительных изменениях окружающей среды, когда необходима перестройка нормы реакции. Новые мутации постоянно появляются в природе, т. к. существует множество особей каждого вида. Воздействие извне радиоактивными, ультрафиолетовыми лучами, химическими веществами может изменить «запись» наследственной информации. Происходит нарушение генетического кода и вместо нормального развития живого организма, предначертанного природой, наступает отступление от нормы – мутацияМутагенные факторы можно разделить на три группы: физические мутагены — все типы ионизирующих излучений (у-лучи, рентгенов­ские лучи), ультрафиолетовое излучение, вы­сокая и низкая температура; химические мутагены — аналоги нук­леиновых кислот, перекиси, соли тяжелых ме­таллов (свинца, ртути), азотистая кислота, многие органические соединения; биологические мутагены — чужерод­ная ДНК и вирусы, которые, встраиваясь в ДНК хозяина, нарушают работу генов. Учение о мутациях было заложено в работах X. Де Фриза (1848—1935). Основные положения этого учения сводятся к следующему:Основные свойства мута­ций: спонтанность — мутации возникают слу­чайно; неспецифичность — могут возникать в любом участке генома; скачкообразность — вызывают новые ка­чественные изменения; ненаправленность — возникшие изме­нения генотипа и фенотипа могут быть как биологически вредными, так и полезны­ми. Мутации классифицируют по измененным клеткам (генеративные и соматические); по причине, их вызвавшей (спонтанные и индуцированные); по характеру изменении в генотипе (генные, хромосомные, цитоплазматические). Генеративные мутации возникают в половых клетках. Если генеративная мутация доминантна, то у организмов новый признак (свойство) проявляется в первом поколении даже в гетерозиготном состоянии. Рецессивная мутация проявляется через несколько поколений при переходе ее в гомозиготное состояние. Примером рецессивной генеративной мутации может служить наличие гемофилии в отдельных семьях. Соматические мутации возникают в генотипе клеток тела (соматических клеток) и обнаруживаются в той его части, которая развилась из измененных клеток. Для видов, размножающихся половым путем, данные мутации не имеют принципиального значения, но важны для видов, размножающихся бесполым путем. Так, у вегетативно размножающихся плодовых и ягодных растений соматическими мутациями могут быть растения с новыми признаками. Например, И. В. Мичурин получил новый сорт яблони Антоновка шестисотграммовая в результате вегетативного размножения соматической почковой мутации, возникшей у яблони сорта Антоновка. Генные мутации обусловлены изменением структуры самого гена — выпадением, добавлением или перестановкой пары нуклеотидов в молекуле ДНК. Такие мутации могут изменять структуру белка фермента, который кодируется данным геном, изменять его свойства или полностью нарушать синтез поли-пептида. Генные мутации встречаются особенно часто. Они могут быть доминантными и рецессивными, возникать в гаметах и соматически клетках спонтанно или под воздействием мутагена. Хромосомные мутации обусловлены изменением структуры или числа хромосом в кариотипе особи. Особый вид хромосомной перестройки представляет перенос фрагмента одной хромосомы на другую гомологичную ей хромосому. Большинство таких мутаций вредно для организма и ведет к снижению его жизнедеятельности. Мутации, обусловленные изменением числа хромосом, бывают полиплоидные и гетероплоидные. Цитоплазматические мутации — результат изменения ДНК клеточных органоидов (пластид, митохондрий). Например, пестролистность у растений вызывают мутации в ДНК хлороплас-тов. Цитоплазматические мутации наследуются по материнской линии, так как зигота получает цитоплазму в основном из яйцеклетки. Комбинаты впая изменчивость обусловливается разнообразием генотипов и обеспечивает появление новых комбинаций признаков в результате скрещивания. Она наследуется в соответствии с законами Г. Менделя и правилом Т. Моргана. Играет большую роль в эволюции, так как дает новые сочетания приспособительных признаков, возникающих при скрещивании. Комбинативная изменчивость используется в селекции для улучшения пород животных, сорт

55. Развитие живых систем: оплодотворение, воспроизводство, деление клеток. Понятие о гомеостазе.

Гомеостаз — способность открытых систем регулировать свою внутреннюю среду так, чтобы поддерживать её постоянство посредством множества корректирующих воздействий, направляемых регуляторными механизмами. Все живые существа, как многоклеточные, так и одноклеточные, способны поддерживать гомеостаз. На клеточном уровне, например, поддерживается постоянная кислотность внутренней среды (pH). На уровне организма у теплокровных животных поддерживается постоянная температура тела. В ассоциации с терминомэкосистема под гомеостазом понимают, в частности, поддержание растениями постоянной концентрации атмосферной двуокиси углерода на Земле.

Митоз. Жизненный цикл клетки – это период ее жизни от деления до деления. Клетки размножаются путем удвоения своего содержимого с последующим делением пополам. Клеточное деление лежит в основе роста, развития и регенерации тканей многоклеточного организма. Клеточный цикл подразделяют на интерфазу, сопровождающуюся точным копированием и распределением генетического материала и митоз – собственно деление клетки после удвоения других клеточных компонентов. Длительность клеточных циклов у разных видов, в разных тканях и на разных стадиях широко варьирует от одного часа (у эмбриона) до года (в клетках печени взрослого человека).

Интерфаза – период между двумя делениями. В этот период клетка готовится к делению. Удваивается количество ДНК в хромосомах. Удваивается количество других органоидов, синтезируются белки, причем наиболее активно те из них, которые образуют веретено деления, происходит рост клетки. К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами. Митоз – это форма деления клеточного ядра. Следовательно, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имелародительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное. Митоз состоит из нескольких последовательных фаз. Профаза. К разным полюсам клетки расходятся удвоенные центриоли. От них к центромерам хромосом протягиваются микротрубочки, образующие веретено деления. Хромосомы утолщены и каждая хромосома состоит из двух хроматид. Метафаза. В этой фазе хорошо видны хромосомы, состоящие из двух хроматид. Они выстраиваются по экватору клетки, образуя метафазную пластинку. Анафаза. Хроматиды расходятся к полюсам клетки с одинаковой скоростью. Микротрубочки укорачиваются. Телофаза. Дочерние хроматиды подходят к полюсам клетки. Микротрубочки исчезают. Хромосомы деспирализуются и снова приобретают нитевидную форму. Формируются ядерная оболочка, ядрышко, рибосомы. Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается. В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра. В опухолевых клетках ход митоза нарушается.Мейоз - это особый способ деления клеток, в результат которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. С помощью мейоза образуются гаметы. В результате редукции споры и половые клетки хромосомного набора получают в каждую гаплоидную спору и гамету по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т. е. кариотип организмов данного вида в ряду поколений остается постоянным.Мейоз состоит из двух последовательных делений, которым в интерфазе предшествует однократная репликация ДНК.Основными событиями профазы первого деления мейоза являются следующие:– гомологичные хромосомы объединяются по всей длине или, как говорят, конъюгируют. При конъюгации образуются хромосомные пары – биваленты;– в результате образуются комплексы, состоящие из двух гомологичных хромосом или из четырех хроматид (подумайте, для чего это нужно?);– в конце профазы происходит кроссинговер (перекрест) между гомологичными хромосомами: хромосомы обмениваются между собой гомологичными участками. Именно кроссинговер обеспечивает разнообразие генетической информации, получаемой детьми от родителей Воспроизводство себе подобных и наследование признаков осуществляются с помощью наследственной информации, материальным носителем которой являются молекулы ДНК. Основой воспроизводства является синтез белков, который происходит в клетках организма по программе, заложенной в ДНК и реализуемой через РНК. Необходимость такого синтеза обусловлена тем, что большинство компонентов живого находится в динамическом состоянии и постоянно обновляется. Белки все время распадаются и их необходимо замещать вновь синтезируемыми молекулами, а для этого нужна генетическая информация о том, как это надо сделать. В метафазе I хромосомы выстраиваются по экватору веретена деления. Центромеры обращены к полюсам. Анафаза I – нити веретена сокращаются, гомологичные хромосомы, состоящие из двух хроматид, расходятся к полюсам клетки, где формируются гаплоидные наборы хромосом (2 набора на клетку). На этой стадии возникают хромосомные рекомбинации, повышающие степень изменчивости потомков. Телофаза I – формируются клетки с гаплоидным набором хромосом и удвоенным количеством ДНК. Формируется ядерная оболочка. В каждую клетку попадает 2 сестринские хроматиды, соединенные центромерой. Второе деление мейоза состоит из профазы II, метафазы II, анафазы II, телофазы II и цитокинеза. Клетки, содержащие гаплоидный набор хромосом, состоящих из двух хроматид, образуют клетки с гаплоидным набором хромосом, состоящих из одной хроматиды. Таким образом из одной диплоидной клетки (оогония или сперматогония) образуются 4 клетки с гаплоидным набором хромосом. Биологическое значение мейоза заключается в образовании клеток, участвующих в половом размножении, в поддержании генетического постоянства видов, а также в спорообразовании у высших растений.  Поэтому нужна такая система воспроизведения, которая должна содержать в закодированном виде, как мы уже убедились, полную информацию, необходимую для построения из запасенного клеткой органического материала нужного в данный момент белка, и механизм извлечения и передачи этой программной информации. Механизм передачи наследственных признаков можно рассмотреть в классическом варианте генетики и более углубленно с позиций молекулярной биологии.Оплодотворение, сингамия, у растений, животных и человека — слияние мужской и женской половых клеток — гамет, в результате чего образуется зигота, способная развиваться в новый организм. При оплодотворении в половом размножении гаметы сливаются и образуют одну клетку - зиготу (от греческого zygotes - соединенный вместе), которая содержит 2n хромосом. При мейозе гаметы (женские - яйцеклетки, мужские - сперматозоиды) образуются из диплоидных клеток. Хромосомы делятся один раз, а сама клетка - дважды, т.е. исходные хромосомы дают 2n 2 = 4n хромосом, а исходные клетки - 122 = 4 клетки. Таким образом, мейоз - это способ деления клеточного ядра, в результате которого образуются четыре дочерних ядра, каждое из которых содержит вдвое меньше хромосом, чем исходное материнское ядро. Такой способ, когда происходит уменьшение числа хромосом в два раза и одна диплоидная клетка, содержащая два набора хромосом, дает после двух быстро следующих друг за другом делений начало четырем клеткам (содержащим уже по одному набору хромосом), называется также редукционным делением. Заметим, что попадание хромосом в гамету также носит случайный характер.