Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Solid-Phase Synthesis and Combinatorial Technologies

.pdf
Скачиваний:
15
Добавлен:
15.08.2013
Размер:
7.21 Mб
Скачать

2.3 OLIGOSACCHARIDES 83

The synthesis of 2.107 is reported in Fig. 2.34. The first coupling–deacetylation cycle to give resin-bound 2.91 was carried out as above; then this intermediate was coupled with the donor 2.110 (3 eq) and TMSOTf (trimethyl silyl trifluorometan sulfonate) (0.3 eq) at –25 °C using a solvent mixture of dry DCM–dry 1,4-dioxane 1/1 to exploit the 1,2-cis driving anomeric effect of ethereal solvents. After stirring at –25 °C for 1 h the suspension was warmed to rt and the resin washed and dried as described previously to give the resin-bound, protected disaccharide 2.111. This was cleaved using the same reagents and conditions (NBS, DTBP, 4 eq, rt, 90 min) with THF–MeOH as solvent mixture. The pure 1-O-methyl disaccharide 2.107 was prepared from 2.108 in 54% yield after chromatography (Fig. 2.34).

This example should have clearly shown the level of complexity involved in the oligomeric SP synthesis of OSs. If we compare it with the optimized, automated SP protocols commonly used to prepare dipeptides (Section 2.1) or dinucleotides (Section 2.2), it is clear that the protected reagents are more precious and must be prepared, rather than bought; the experimental conditions must be carefully controlled to ensure the desired regioand stereochemical outcome of the reaction; and the cleavage/workup/purification procedures require more attention to preserve the integrity of intermediates and final compounds. Despite all of this, the clear advantages provided by SPS, especially related to simplified work-up/purification of resin-bound compounds compared to solution procedures, make OS SP extremely appealing to obtain large quantities of complex and sensitive oligosaccharides with high yields and purities. We may reasonably expect significant technological improvements to provide the chemist

 

 

 

Ac

 

a

BnO

O

 

O

O

SH

BnO

 

BnO

 

 

 

2.108

 

2.90

S

 

 

 

BnO

OH

O

 

b

 

O

 

 

BnO

 

 

 

 

 

 

 

 

 

BnO

 

 

 

 

 

 

2.91 S

 

 

Ac

 

 

O

 

 

Ac

 

 

Ac

 

O

 

 

O Ac

 

O

 

OBn

 

O

OBn

c

O

d

O

 

 

BnO

O

 

 

 

BnO

 

O

 

BnO

O

 

 

 

O

BnO

 

 

2.111

BnO

 

 

 

 

BnO

 

 

 

S

 

 

 

 

 

 

OMe

 

 

 

O

2.107

 

 

 

 

54% from 2.108

a:2.109, TMSOTf, DCM, rt, 1 hr; b: 0.5M NaOMe, DCM/MeOH 10/1, rt, 2 hrs;

c:2.110, TMSOTf, DCM, -25°C to rt, 2 hrs; d: NBS, DTBP, acetone/water 9/1, rt, 90'.

Figure 2.34 SP synthesis of compound 2.107.

84 SOLID-PHASE SYNTHESIS: OLIGOMERIC MOLECULES

with better tools able to provide a large variety of oligosaccharides for the most diverse applications in the future.

REFERENCES

1.Merrifield, R. B., J. Am. Chem. Soc. 85, 2149–2154 (1963).

2.Fields, G. B., Methods Enzymol. 289 (Solid-Phase Peptide Synthesis) 1997.

3.Henkel, B., Zhang, L. and Bayer, E., Liebigs Ann./Recl., 2161–2168 (1997).

4.Davies, M. and Bradley, M., Angew. Chem., Int. Ed. Engl. 36, 1097–1099 (1997).

5.Jensen, K. J., Alsina, J., Songster, M. F., Vagner, J., Albericio, F. and Barany, G., J. Am. Chem. Soc. 120, 5441–5452 (1998).

6.Zheng, A., Shan, D. and Wang, B., J. Org. Chem. 64, 156–161 (1999).

7.Davies, M. and Bradley, M., Tetrahedron 55, 4733–4746 (1999).

8.Alewood, P., Alewood, D., Miranda, L., Love, S., Meutermans, W. and Wilson, D.,

Methods Enzymol. 289, 14–29 (1997).

9.Wellings, D. A. and Atherton, E., Methods Enzymol. 289, 44–67 (1997).

10.Sheppard, R. C. J. Chem. Br. 19, 402–414 (1983).

11.Small, P. W. and Sherrington, D. C. J. Chem. Soc. Chem. Commun. 1589–1591 (1989).

12.Atherton, E., Brown, E., Sheppard, R. C. and Rosevear, A.,J. Chem. Soc. Chem. Commun. 1151–1152 (1981).

13.Bray, A. M., Maeji, N. J. and Geysen, H. M., Tetrahedron Lett. 31, 5811–5814 (1990).

14.Frank, R. and Doering, R., Tetrahedron 44, 6031–6040 (1988).

15.Eichler, J., Bienert, M., Stierandova, A. and Lebl, M., Pept. Res. 4, 296–307 (1991).

16.Orlowska, A., Holodowicz, E. and Drabarek, S., Pol. J. Chem. 55, 2349–2354 (1981).

17.Royo, M., del Fresno, M., Frieden, A., Van Den Nest, W., Sanseverino, M., Alsina, J., Kates, S. A., Barany, G. and Albericio, F., React. Funct. Polym. 41, 103–110 (1999).

18.Alsina, J., Jensen, K. J., Albericio, F. and Barany, G.,Chem. -Eur. J. 5, 2787–2795 (1999).

19.Alsina, J., Scott Yokum, T., Albericio, F. and Barany, G., J. Org. Chem. 64, 8761–8769 (1999).

20.Suguro, T. and Yanai, M., J. Antibiot. 52, 835–838 (1999).

21.Albericio, F. and Carpino, L. A., Methods Enzymol. 289, 104–126 (1997).

22.Smith, A. J., Methods Enzymol. 289, 419–426 (1997).

23.Sanchez, A. and Smith, A. J., Methods Enzymol. 289, 469–478 (1997).

24.Beranova-Giorgianni, S. and Desiderio, D. M., Methods Enzymol. 289, 478–499 (1997).

25.Burdick, D. J. and Stults, J. T., Methods Enzymol. 289, 499–519 (1997).

26.Grant, G. A., Crankshaw, M. W. and Gorka, J., Methods Enzymol. 289, 395–419 (1997).

27.Edman, P., Acta Chem. Scand. 4, 283–286 (1950).

28.O’Donnell, M. J., Zhou, C. and Scott, W. L., J. Am. Chem. Soc. 118, 6070–6071 (1996).

29.Kihlberg, J., Methods Enzymol. 289, 221–244 (1997).

30.Perich, J. W., Methods Enzymol. 289, 245–266 (1997).

REFERENCES 85

31.Kates, S. A., Sole, N. A., Albericio, F. and Barany, G., in Peptides: Design, Synthesis and Biological Activity, C. Basava and G. M. Anantharamaiah (Eds.). Birkhauser, Boston, MA 1994, pp. 39–58.

32.Blackburn, C. and Kates, S. A., Methods Enzymol. 289, 175–198 (1997).

33.Simon, R. J., Kania, R. S., Zuckermann, R. N., Huebner, V D., Jewell, D. A., Banville, S., Ng, S., Wang, L., Rosenberg, S. et al., Proc. Natl. Acad. Sci. USA 89, 9367–9371 (1992).

34.Zuckermann, R. N., Kerr, J. M., Kent, S. B. H. and Moos, W. H., J. Am. Chem. Soc. 114, 10646–10647 (1992).

35.Hamper, B. C., Kolodziej, S. A., Scates, A. M., Smith, R. G. and Cortez, E.,J. Org. Chem. 63, 708–718 (1998).

36.Rotella, D. P., J. Am. Chem. Soc. 118, 12246–12247 (1996).

37.Burgess, K., Ibarzo, J., Linthicum, D. S., Shin, H., Shitangkoon, A., Totani, R., Zhang, A. J., J. Am. Chem. Soc. 119, 1556–1564 (1997).

38.Bischoff, L., David, C., Roques, B. P. and Fournie-Zaluski, M. C., J. Org. Chem. 64, 1420–1423 (1999).

39.Szekely, Z., Zakhariev, S., Guarnaccia, C., Antcheva, N. and Pongor, S.,Tetrahedron Lett. 40, 4429–4432 (1999).

40.Buchinska, T. V , J. Pept. Sci. 53, 314–321 (1999).

41.Krog-Jensen, C., Christensen, M. K. and Meldal, M., Lett. Pept. Sci. 6, 193–197 (1999).

42.Nishiyama, Y and Kurita, K., Tetrahedron Lett. 40, 927–930 (1999).

43.Ramage, R., Jiang, L., Kim, Y -D., Shaw, K., Park, J.-L. and Kim, H.-J., J. Pept. Sci. 5, 195–200 (1999).

44.Miranda, L. P. and Alewood, P. F., Proc. Natl. Acad. Sci. USA 96, 1181–1186 (1999).

45.Robertson, N., Jiang, L. and Ramage, R., Tetrahedron 55, 2713–2720 (1999).

46.Angell, Y My Han, Y , Albericio, F. and Barany, G.,Fifteenth Pept. Proc. Am. Pept. Symp.,

J.P Tam and P. T. P Kaumayai (Eds.). Kluwer, Dordrecht, Netherlands, 1999, pp. 339–340.

47.Rinnova, M., Lebl, M. and Soucek, M., Lett. Pept. Sci. 6, 15–22 (1999).

48.Fischer, M. and Tran, C. D., Anal. Chem. 71, 2255–2261 (1999).

49.Rademann, J., Grotli, M., Meldal, M. and Bock, K., J. Am. Chem. Soc. 121, 5459–5466 (1999).

50.Rosenthal, K., Erlandsson, M. and Unden, A., Tetrahedron Lett. 40, 377–380 (1999).

51.Bourne, G. T., Meutermans, W. D. F., Alewood, P. F., McGeary, R. P., Scanlon, M., Watson,

A.A., Smythe, M. L., J. Org. Chem. 64, 3095–3101 (1999).

52.Hargittai, B., Han, Y , Kates, S. A. and Barany, G., Fifteenth Pept. Proc. Am. Pept. Symp.,

J.P Tam and P. T. P Kaumayai (Eds.). Kluwer, Dordrecht, Netherlands, 1999, pp. 273–274.

53.Paris, M., Douat, C., Heitz, A., Gibbons, W., Martinez, Y and Fehrentz, Y -A.,Tetrahedron Lett. 40, 5179–5182 (1999).

54.Milton, S. C. F., De Lisle Milton, R. C., Kates, S. A. and Glabe, C., Lett. Pept. Sci. 6, 151–156 (1999).

55.Kaiser, T., Luppa, P. and Voelter, W., J. Chromatogr., A 852, 189–195 (1999).

86SOLID-PHASE SYNTHESIS: OLIGOMERIC MOLECULES

56.Sabatino, G., Chelli, M., Mazzucco, S., Ginanneschi, M. and Papini, A. M., Tetrahedron Lett. 40, 809–812 (1999).

57.Cabrele, C., Langer, M. and Beck-Sickinger, A. G., J.Org. Chem. 64, 4353–4361 (1999).

58.Moore, M. L., Newlander, K. A., Bryan, H., Bryan, W. M. and Huffman, W. F., Fifteenth Pept. Proc. Am. Pept. Symp., J. P. Tam and P. T. P. Kaumayai (Eds.). Kluwer, Dordrecht, Netherlands, 1999, pp. 42–44.

59.Kutterer, K. M. K., Barnes, M. L. and Arya, P., J. Comb. Chem. 1, 28–31 (1999).

60.Jezek, J., Velek, J., Veprek, P., Velkova, V , Trnka, T., Pecka, J., Ledvina, M., Vondrasek, J. and Pisacka, M., J. Pept. Sci. 5, 46–55 (1999).

61.Veprek, P. and Jezek, J., J. Pept. Sci. 5, 203–220 (1999).

62.Vazquez, E., Caamano, A. M., Castedo, L, Gramberg, D. and Mascarenas, J. L.,Tetrahedron Lett. 40, 3625–3628 (1999).

63.Mayfield, L., Katipally, R., Simmons, C. and Corey, D. R.,Fifteenth Pept. Proc. Am. Pept. Symp, J. P. Tam and P. T. P. Kaumayai (Eds.). Kluwer, Dordrecht, Netherlands, 1999, pp. 299–300.

64.Hamuro, Y , Marshall, W. J. and Scialdone, M. A., J. Comb. Chem. 1, 163–172 (1999).

65.Poupart, M.-A., Fazal, G., Goulet, S. and Mar, L. T.,J. Org. Chem. 64, 1356–1361 (1999).

66.Gennari, C., Mielgo, A., Potenza, D., Scolastico, C., Piarulli, U. and Manzoni, L.,Eur. J. Org. Chem. 379–388 (1999).

67.Kates, S. A., Sole, N. A., Johnson, C. R., Hudson, D., Barany, G. and Albericio, F., Tetrahedron Lett. 34, 1549–1552 (1993).

68.Albericio, F., Kneib-Cordonier, N., Biancalana, S., Gera, L., Masada, R. I., Hudson, D. and Barany, G., J. Org. Chem. 55, 3730–3743 (1990).

69.Albericio, F., Cases, M., Alsina, J., Triolo, S. A., Carpino, L. A. and Kates, S. A., Tetrahedron Lett. 38, 4853–4856 (1997).

70.Letsinger, R. L. and Mahadevan, V , J. Am. Chem. Soc. 88, 5319–5324 (1966).

71.Letsinger, R. L. and Ogilvie, K. K., J. Am. Chem. Soc. 91, 3350–3355 (1969).

72.Kehler, J., Pueschl, A. and Dahl, O., Tetrahedron Lett. 37, 8041–8044 (1996).

73.Garegg, P. J., Regberg, T., Stawinski, J. and Stroemberg, R., Chem. Scr. 25, 280–282 (1985).

74.Agrawal, S. and Tang, J.-Y , Tetrahedron Lett. 31, 7541–7544 (1990).

75.Kung, P. P. and Jones, R. A., Tetrahedron Lett. 33, 5869–5872 (1992).

76.Brill, W. K.-D., Tetrahedron Lett. 36, 703–706 (1995).

77.Letsinger, R. L. and Lunsford, W. B., J. Am. Chem. Soc. 98, 3655–3661 (1976).

78.Matteucci, M. D. and Caruthers, M. H., J. Am. Chem. Soc. 103, 3185–3191 (1981).

79.Beaucage, S. L. and Iyer, R. P , Tetrahedron 48, 2223–2311 (1992).

80.Beaucage, S. L. and Iyer, R. P , Tetrahedron 49, 1925–1963 (1993).

81.Beaucage, S. L. and lyer, R. P., Tetrahedron 49, 10441–10448 (1993).

82.Kaplan, B. E. and Itakura, K., inSynthesis and Applications of DNA and RNA, S. A. Narang (Ed.). Academic Press, Orlando, FL, 1997, pp. 9–23.

83.Ott, J. and Eckstein, F., Nucl. Acids Res. 12, 9137–9142 (1984).

84.Alul, R. H., Singman, C. N., Zhang, G. and Letsinger, R. L., Nucl. Acids Res. 19, 1527–1532 (1991).

REFERENCES 87

85.Koster, H., Tetrahedron Lett. 1527–1530 (1972).

86.Katzhendler, J., Cohen, S., Rahamim, E., Weisz, M., Ringel, I. and Deutsch, J., Tetrahedron 45, 2777–2792 (1989).

87.Van Aerschot, A., Herdewijn, P. and Vanderhaeghe, H.,Nucleosides Nucleotides 7, 75–90 (1988).

88.Efcavitch, J. W., Biophosphates and their Analogues—Synthesis, Structure, Metabolism and Activity, K. S. Bruzik and W. J. Stec (Eds.). Elsevier, Amsterdam, Holland, 1987, pp. 85–104.

89.Gough, G. R., Brunden, M. J. and Gilliam, P. T.,Tetrahedron Lett. 22, 4177–4180 (1981).

90.Devivar, R. V , Koontz, S. L., Peltier, W. J., Pearson, J. E., Guillory, T. A. and Fabricant,

J.D., Bioorg. Med. Chem. Lett. 9, 1239–1242 (1999).

91.Balgobin, N. and Chattopadhyaya, J., Nucleosides Nucleotides 6, 461–463 (1987).

92.Brown, T., Pritchard, C. E., Turner, G. and Salisbury, S. A.,J. Chem. Soc. Chem. Commun. 891–893 (1989).

93.Sproat, B. S. and Brown, D. M., Nucl. Acids Res. 13, 2979–2987 (1985).

94.Asseline, U. and Thuong, N. T., Tetrahedron Lett. 30, 2521–2524 (1989).

95.Asseline, U. and Thuong, N. T., Tetrahedron Lett. 31, 81–84 (1990).

96.Yoo, D. J. and Greenberg, M. M., J. Org. Chem. 60, 3358–3364 (1995).

97.Lyttle, M. H., Hudson, D. and Cook, R. M., Nucl. Acids Res. 24, 2793–2798 (1996).

98.Waldvogel, S. R. and Pfleiderer, W., Helv. Chim. Acta 81, 46–58 (1998).

99.Azhayev, A. V , Tetrahedron 55, 787–800 (1999).

100.Kumar, P. and Gupta, K. C., React. Funct. Polym. 41, 197–204 (1999).

101.Lyttle, M. H., Dick, D. J., Hudson, D. and Cook, R. M., Nucleosides Nucleotides 18, 1809–1824 (1999).

102.Iyer, R. P., Yu, D., Xie, J., Zhou, W. and Agrawal, S., Bioorg. Med. Chem. Lett. 7, 1443–1448 (1997).

103.Smith, M., Rammler, D. H., Goldberg, J. H. and Khorana, G., J. Am. Chem. Soc. 84, 430–440 (1962).

104.Caruthers, M. H., Barone, A. D., Beaucage, S. L., Dodds, D. R., Fisher, E. F., McBride,

L.J., Matteucci, M., Stabinsky, Z. and Tang, J. Y ,Methods Enzymol. 154, 287–313 (1987).

105.Kwiatkowski, M., Heikkilae, J., Welch, C. J. and Chattopadhyaya, J., Stud. Org. Chem. 20, 259–274 (1985).

106.Ma, Y -X. and Sonveaux, E., Biopolymers 28, 965–973 (1989).

107.Pfleiderer, W., Schwarz, M. and Schirmeister, H., Chem. Scr. 26, 147–154 (1986).

108.Pfleiderer, W., Biophosphates and their Analogues—Synthesis, Structure, Metabolism and Activity, K. S. Bruzik and W. J. Stec (Eds.). Elsevier, Amsterdam, Holland, 1987, pp. 133–146.

109.Brown, J. M., Christodoulou, C., Jones, S. S., Modak, A. S., Reese, C. B., Sibanda, S. and Ubasawa, A., J. Chem. Soc., Perkin Trans. I, 1735–1750 (1989).

110.Brown, J. M., Christodolou, C., Modak, A. S., Reese, C. B. and Serafinowska, H. T., J. Chem. Soc., Perkin Trans. I, 1751–1767 (1989).

111.Iyer, R. P., Yu, D., Habus, L, Ho, N.-H., Johnson, S., Devlin, T., Jiang, Z., Zhou, W., Xie,

J.and Agrawal, S., Tetrahedron 53, 2731–2750 (1997).

88SOLID-PHASE SYNTHESIS: OLIGOMERIC MOLECULES

112.Beier, M. and Pfleiderer, W., Helv. Chim. Acta 82, 633–644 (1999).

113.Stutz, A. and Pitsch, S., Synlett, 930–934 (1999).

114.Alvarez, K., Vasseur, J.-J., Beltran, T. and Imbach, J.-L., J. Org. Chem. 64, 6319–6328 (1999).

115.Beaucage, S. L. and Caruthers, M. H., Tetrahedron Lett. 22, 1859–1862 (1981).

116.Josephson, S., Lagerholm, E. and Palm, G., Acta Chem. Scand. B 38, 539–545 (1984).

117.McBride, L. J. and Caruthers, M. H., Tetrahedron Lett. 24, 245–248 (1983).

118.Adams, S. P., Kavka, K. S., Wykes, E. J., Holder, S. B. and Galluppi, G. R.,J. Am. Chem. Soc. 105, 661–663 (1983).

119.Caruthers, M. H., Science 230, 281–285 (1985).

120.Sinha, N. D., Biernat, J., McManus, J. and Koester, H., Nucl. Acids Res. 12, 4539–4557 (1984).

121.Cramer, H. and Pfleiderer, W., Helv. Chim. Acta 82, 614–632 (1999).

122.Eadie, J. S. and Davidson, D. S., Nucl. Acids Res. 15, 8333–8349 (1987).

123.De Mesmaeker, A., Haener, R., Martin, P. and Moser, H. E.,Acc. Chem. Res. 28, 366–374 (1995).

124.Ceulemans, G., Van Aerschot, A., Wroblowski, B., Rozenski, J., Hendrix, C. and Herdewijn, P., Chem. - Eur. J. 3, 1997–2010 (1997).

125.Nielsen, P., Pfundheller, H. M., Olsen, C. E. and Wengel, J., J. Chem. Soc., Perkin Trans. I 3423–3434 (1997).

126.Christensen, N. K., Petersen, M., Nielsen, P., Jacobsen, J. P., Olsen, C. E. and Wengel, J.,

J.Am. Chem. Soc. 120, 5458–5463 (1998).

127.Tang, X.-Q., Liao, X. and Piccirilli, J. A., J. Org. Chem. 64, 747–754 (1999).

128.Romieu, A., Gasparutto, D., Molko, D., Ravanat, J.-L. and Cadet, J., Eur. J. Org. Chem., 49–56 (1999).

129.Seela, F. and Zulauf, M., J. Chem. Soc., Perkin Trans. I, 479–488 (1999).

130.Romieu, A., Gasparutto, D. and Cadet, J., J. Chem. Soc., Perkin Trans. I, 1257–1264 (1999).

131.Kahl, J. D. and Greenberg, M. M., J. Am. Chem. Soc. 121, 597–604 (1999).

132.Khan, S. I. and Grinstaff, M. W., J. Am. Chem. Soc. 121, 4704–4705 (1999).

133.Adinolfi, M., Barone, G., De Napoli, L., Guariniello, L., Iadonisi, A. and Piccialli, G., Tetrahedron Lett. 40, 2607–2610 (1999).

134.Stec, W. J., J. Am. Chem. Soc. 106, 6077–6079 (1984).

135.Bannwarth, W., Helv. Chim. Acta 71, 1517–1527 (1988).

136.Zhang, Z., Nichols, A., Tang, J. X., Han, Y and Tang, J. Y , Tetrahedron Lett. 40, 2095–2098 (1999).

137.Seeberger, P. H. and Caruthers, M. H., Tetrahedron 55, 5759–5772 (1999).

138.Micura, R., Chem. - Eur. J. 5, 2077–2082 (1999).

139.Frieden, M., Grandas, A. and Pedroso, E., Chem. Commun., 1593–1594 (1999).

140.Nielsen, P. E., Egholm, M., Berg, R. H. and Buchardt, O.,Science 254, 1497–1500 (1991).

141.Thomson, S. A., Josey, J. A., Cadilla, R., Gaul, M. D., Hassman, C. F., Luzzio, M. J., Pipe,

A.J., Reed, K. L., Ricca, D. J. et al., Tetrahedron 51, 6179–6194 (1995).

REFERENCES 89

142.De Napoli, L., Messere, A., Montesarchio, D., Piccialli, G., Benedetti, E., Bucci, E. and Rossi, F., Bioorg. Med. Chem. 7, 395–400 (1999).

143.Schwope, I., Bleczinski, C. F. and Richert, C., J. Org. Chem. 64, 4749–4761 (1999).

144.Corey, D. R., Trends Biotechnol. 15, 224–229 (1997).

145.Thibon, J., Latxague, L. and Deleris, G., J. Org. Chem. 62, 4635–4642 (1997).

146.Kirshenbaum, K., Zuckerman, R. N. and Dill, K. A., Curr. Opin. Struct. Biol. 9, 530–535 (1999).

147.Iyer, R. P , Ho, N.-H., Yu, D. and Agrawal, S.,Bioorg. Med. Chem. Lett. 7, 871–876 (1997).

148.Iyer, R. P., Egan, W., Regan, J. B. and Beaucage, S. L.,J. Am. Chem. Soc. 112, 1253–1254 (1990).

149.Frechet, J. M. and Schuerch, C., J. Am. Chem. Soc. 93, 492–496 (1971).

150.Frechet, J. M. and Schuerch, C., J. Am. Chem. Soc. 94, 604–609 (1972).

151.Zehavi, U. and Patchornik, A., J. Am. Chem. Soc. 95, 5673–5677 (1973).

152.Guthrie, R. D., Jenkins, A. D. and Roberts, G. A. F., J. Chem. Soc., Perkin Trans. I, 2414–2417 (1973).

153.Excoffier, G., Gagnaire, D., Utille, J. P. and Vignon, M., Tetrahedron Lett. 5065–5068 (1972).

154.Danishefsky, S. J., McClure, K. F., Randolph, J. T. and Ruggeri, R. B., Science 260, 1307–1309 (1993).

155.Yan, L., Taylor, C. M., Goodnow, R. Jr. and Kahne, D.,J. Am. Chem. Soc. 116, 6953–6954 (1994).

156.Rademann, J. and Schmidt, R. R., Tetrahedron Lett. 37, 3989–3990 (1996).

157.Schuster, M., Wang, P., Paulson, J. C. and Wong, C.-H.,J. Am. Chem. Soc. 116, 1135–1136 (1994).

158.Zheng, C., Seeberger, P. H. and Danishefsky, S. J., J. Org. Chem. 63, 1126–1130 (1998).

159.Randolph, J. T. and Danishefsky, S. J.,Angew. Chem. Int. Ed. Engl. 33, 1470–1473 (1994).

160.Roberge, J. Y , Beebe, X. and Danishefsky, S. J., Science 269, 202–204 (1995).

161.Seeberger, P. H., Eckhardt, M., Gutteridge, C. E. and Danishefsky, S. J., J. Am. Chem. Soc. 119, 10064–10072 (1997).

162.Zheng, C., Seeberger, P. H. and Danishefsky, S. J., Angew. Chem. Int. Ed. 37, 786–789 (1998).

163.Timmers, C. M., van der Marel, G. A. and van Boom, J. A., Recl. Trav. Chim. Pays-Bas 112, 609–610 (1993).

164.Excoffier, G., Gagnaire, D., Utille, J. P. and Vignon, M.,Tetrahedron 31, 549–553 (1975).

165.Wang, Y , Zhang, H. and Voelter, W., Chem. Lett. 273–274 (1995).

166.Liang, R., Yan, L, Loebach, J., Ge, M., Uozumi, Y , Sekanina, K., Horan, N., Gildersleeve, J. and Thompson, C. et al., Science 274, 1520–1522 (1996).

167.Douglas, S. P., Whitfield, D. M. and Krepinsky, J. J., J. Am. Chem. Soc. 113, 5095–5097 (1991).

168.Rademann, J. and Schmidt, R. R., J. Org. Chem. 62, 3650–3653 (1997).

169.Heckel, A., Mross, E., Jung, K.-H., Rademann, J. and Schmidt, R. R., Synlett, 171–173 (1998).

170.Rademann, J., Geyer, A. and Schmidt, R. R.,Angew. Chem. Int. Ed. 37, 1241–1245 (1998).

90SOLID-PHASE SYNTHESIS: OLIGOMERIC MOLECULES

171.Halcomb, R. L., Huang, H. and Wong, C.-H.,J. Am. Chem. Soc. 116, 11315–11322 (1994).

172.Blixt, O. and Norberg, T., J. Org. Chem. 63, 2705–2710 (1998).

173.Bayer, R., presented at the Second CHI GlycoTechnology Conference, Cambridge Healthtech Institute, La Jolla, CA, 1994.

174.Nicolaou, K. C., Wissinger, N., Pastor, J. and DeRoose, F.,J. Am. Chem. Soc. 119, 449–450 (1997).

175.Rodebaugh, R., Joshi, S., Fraser-Reid, B. and Geysen, H. M., J. Org. Chem. 62, 5660– 5661 (1997).

176.Ito, Y , Kanie, O. and Ogawa, T., Angew. Chem. Int. Ed. Engl. 35, 2510–2512 (1996).

177.Ito, Y and Ogawa, T., J. Am. Chem. Soc. 119, 5562–5566 (1997).

178.Doi, T., Sugiki, M., Yamada, H., Takahashi, T. and Porco, J. A., Jr., Tetrahedron Lett. 40, 2141–2144 (1999).

179.Weigelt, D. and Magnusson, G., Tetrahedron Lett. 39, 2839–2842 (1998).

180.Wallberg, A, Weigelt, D., Falk, N. and Magnusson, G., Tetrahedron Lett. 38, 4285–4286 (1997).

181.Nicolaou, K. C., Watanabe, N., Li, J., Pastor, J. and Winssinger, N.,Angew. Chem. Int. Ed. 37, 1559–1561 (1998).

182.Kobayashi, S., Wakabayashi, T. and Yasuda, M., J. Org. Chem. 63, 4868–4869 (1998).

183.Blixt, O. and Norberg, T., Carbohydr. Res. 319, 80–91 (1999).

184.Fukase, K., Egusa, K., Nakai, Y and Kusumoto, S., Mol. Diversity 2, 182–188 (1997).

185.Seeberger, P. H., Beebe, X., Sukenick, G. D., Pochapsky, S. and Danishefsky, S. D.,Angew. Chem. Int. Ed. 36, 491–493 (1997).

186.Sofia, M. J., in Combinatorial Chemistry and Molecular Diversity in Drug Discovery, E. M. Gordon and J. F. Kerwin, Jr. (Eds.). Wiley-Liss, New York, 1998, pp. 243–269.

187.Seeberger, P.H. and Danishefsky, S. J., Acc. Chem. Res. 31, 685–695 (1998).

188.Osborn, H. M. I. and Khan, T. H., Tetrahedron 55, 1807–1850 (1999).

189.Davis, B. G., J. Chem. Soc., Perkin Trans. I, 3215–3237 (1999).

190.Paulsen, H. and Helpap, B., Carbohydr. Res. 216, 289–313 (1991).

191.Windmuller, R. and Schmidt, R. R., Tetrahedron Lett. 35, 7927–7930 (1994).

Solid-Phase Synthesis and Combinatorial Technologies. Pierfausto Seneci Copyright © 2000 John Wiley & Sons, Inc.

ISBNs: 0-471-33195-3 (Hardback); 0-471-22039-6 (Electronic)

3Solid-Phase Synthesis: Small Organic Molecules

The high reliability of automated oligomer SPS derives from the capillary optimization of the SP reaction conditions used for the iterative cycles. All the parameters have been thoroughly studied, and improvements such as new coupling agents, new protected building blocks, or new linkers continuously increase the options for the synthetic chemist. The advantages of peptide and ON SPS versus solution-phase synthesis for the same sequence are evident: no need of intermediate purification, complete automation of reaction cycles, fast SP reactions, and negligible loss of material. Examples where significant amounts of pure 10to 100-mers were prepared by SPS are abundant in the literature. The automation of the SP protocols is possible because of the relatively restricted variety of SP reaction conditions used: couplings, deprotections, protections, and cleavage. As an example, the Fmoc protocol for the synthesis of a decapeptide will require from 22 to 23 SP steps: the support of the starting material on SP, 10 Fmoc deprotections, 10 couplings, the final cleavage and deprotection of side chains plus, when necessary, the attachment of a linker onto the support. The couplings and the Fmoc deprotections are identical for each of the 20 steps, so that the classical conditions used in an Fmocprotocol only sporadically require minor adjustments for specific oligomeric sequences. The automation of these steps requires only a few optimized experimental protocols to be repeated in iterative cycles.

The synthesis of nonoligomeric small organic molecules is quite different, and its characteristics do not help an automated transfer onto SP. The whole arsenal of organic reactions can be used to build a molecule, and even a short synthesis may require a few steps with completely different reaction conditions. While each reaction in solution is independent, allowing every intermediate to be purified and submitted to the following reaction conditions without any interference from the previous step, an SPS route requires the support and the linker to be perfectly stable during all the reaction conditions used. A wide variety of different supports and linkers is thus necessary to accomplish the SPS of small organic molecules. For these reasons one or a few common protocols for organic SPS cannot be defined. Instead, a specific study to define an SP-compatible synthetic route and to assess its feasibility must be performed every time. In this chapter the entire process from the selection of a target to its successful SP synthesis, including all of the intermediate steps, will be detailed (Sections 3.1 and 3.2). A scheme showing the important steps in this process is reported in Fig. 3.1. The exploitation of the SP route for a specific target, encompassing the design, assessment, and realization of the SPS of one or more combinatorial libraries (Section 3.3), will also be described. This will represent the introduction to the

91

92 SOLID-PHASE SYNTHESIS: SMALL ORGANIC MOLECULES

TARGET SELECTION

RETROSYNTHESIS

SYNTHESIS VALIDATION

IN SOLUTION

SOLID PHASE SYNTHESIS

DESIGN

SOLID PHASE SYNTHESIS

VALIDATION

OPTIMIZATION OF SPS

REACTION CONDITIONS

EXPLOITATION OF AN SPS ROUTE:

TOWARDS CHEMICAL LIBRARIES

Figure 3.1 Logical scheme to a successful small organic molecule SPS and to related synthetic combinatorial libraries.

following chapters where combinatorial chemistry and combinatorial technologies will be extensively covered.

All of the above-mentioned aspects will also be illustrated through the detailed description of a specific example (1), which spans every phase of a successful SPS and shows its potential to generate synthetic organic libraries (Section 3.4). The same will happen for several other recent examples (Section 3.5) using the analysis model built in Sections 3.1–3.3.

3.1 SMALL ORGANIC MOLECULES ON SOLID PHASE: TARGET SELECTION AND SOLUTION STUDIES

3.1.1 Target Selection and Retrosynthesis

The selection of a small organic molecule as the target for a chemical synthetic route may arise from any potential application for this molecule in any specific field. The selection depends on the requirements of the individual chemical project and cannot be generalized in any way. Once the target is selected, the so-called retrosynthetic