Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Mechatronics.pdf
Скачиваний:
81
Добавлен:
23.08.2013
Размер:
5.07 Mб
Скачать

page 92

7. CONTINUOUS CONTROL SYSTEMS

7.1 CONTROL SYSTEMS

Control systems use some output state of a system and a desired state to make control decisions.

In general we use negative feedback systems because,

-they typically become more stable

-they become less sensitive to variation in component values

-it makes systems more immune to noise

Consider the system below, and how it is enhanced by the addition of a control system.

 

 

Control variable

 

 

INPUT

 

 

 

OUTPUT

 

 

SYSTEM

(e.g. θ gas)

 

 

(e.g. velocity)

 

 

 

 

(e.g. a car)

 

 

 

 

 

 

 

 

 

vdesired

verror

Driver or

θ gas

car

vactual

+

 

_

cruise control

 

 

 

 

 

 

 

 

The control system is in the box and could be a driver or a cruise control (this type is known as a feedback control system)

page 93

Human rules to control car (also like expert system/fuzzy logic):

1.If verror is not zero, and has been positive/negative for a while, increase/decrease θ gas

2.If verror is very big/small increase/decrease θ gas

3.If verror is near zero, keep θ gas the same

4.If verror suddenly becomes bigger/smaller, then increase/decrease θ gas.

5.etc.

Some of the things we do naturally (like the rules above) can be done with mathematics

7.1.1 PID Control Systems

• The basic equation for a PID controller is shown below. This function will try to compensate for error in a controlled system (the difference between desired and actual output values).

 

de

u = Kce + Kiedt + Kd

-----

 

 

dt

• The figure below shows a basic PID controller in block diagram form.

 

proportional

 

PID Controller

 

V

 

Kp( e)

 

 

V

 

 

 

 

+V

 

integral

+

 

 

 

 

 

+

e

Ki( e)

 

u

 

 

 

+

amp

motor

 

 

 

 

 

 

-

derivative

+

-V

 

 

K

 

d

 

 

 

 

d

----e

 

 

 

 

 

dt

 

 

 

page 94

e.g.

θ

 

= K

 

v

 

+ K

 

v

 

dt + K

 

dverror

gas

c

error

i

error

----------------

 

 

 

 

 

 

d

dt

Rules 2 & 3

Rule 4

(general difference)

(Immediate error)

Rule 1

(Long term error)

Kc

Ki Relative weights of components

Kd

This is a PID Controller

Proportional

Integral

Derivative

For a PI Controller

θ gas = Kcverror + Kiverrordt

For a P Controller

θ gas = Kc verror

For a PD Controller

 

 

dverror

θ

 

= K

 

v

 

+ K

gas

c

error

----------------

 

 

 

 

d

dt

 

• The PID controller is the most common controller on the market.

7.1.2 Analysis of PID Controlled Systems With Laplace Transforms

page 95

1. We can rewrite the control equation as a ratio of output to input.

θ

 

 

= K

 

v

 

 

+ K

 

v

 

 

 

dt + K

 

dverror

 

gas

c

error

i

error

----------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

dt

 

 

θ

 

gas

 

 

 

 

K

 

+ K

i

dt + K

 

d

 

 

 

 

------------ =

c

d

----

 

 

 

 

 

verror

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then do a Laplace transform

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

s

 

 

 

 

 

 

 

dx

sx

 

 

 

 

 

 

 

 

 

 

 

 

----

 

 

 

 

 

 

 

----- →

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

=

1

 

 

 

 

 

xdt

=

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

θ gas

 

 

=

Kc +

Ki

+ Kds

 

 

 

 

The transfer function

 

 

 

 

 

 

 

 

 

------------

 

 

----

 

 

 

 

 

 

 

 

 

 

verror

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. We can also develop a transfer function for the car.

F = Aθ gas

= 10θ

gas

 

 

 

 

 

 

 

 

 

 

F

= 10

 

Transfer function for engine and transmission. (Laplace

---------

 

θ

gas

 

 

transform would be the same as initial value.)

 

 

 

 

 

 

d2x

dv

F =

Ma =

M

-------

= M-----

 

 

 

 

 

 

dt

2

dt

 

 

 

 

 

 

 

 

F

=

 

d

 

 

 

 

--

 

M----

 

 

 

 

v

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

 

1

 

 

 

 

 

 

 

 

 

 

 

L

---

 

------

 

 

Transfer function for acceleration of car mass

 

F

= Ms

 

 

 

 

 

 

 

 

 

 

 

page 96

3. We want to draw the system model for the car.

θ gas

10

F

1

vactual

 

 

 

 

------

 

 

 

 

 

 

 

 

 

 

 

Ms

 

The ‘system model’ is shown above.

If θ gas is specified directly, this is called ‘open loop control’. This is not desirable, but much simpler.

The two blocks above can be replaced with a single one.

θ gas

10

vactual

 

 

------

 

 

 

 

 

 

Ms

 

4.If we have an objective speed, and an actual speed, the difference is the ‘system error’

verror = vdesired vactual

‘set-point’ - desired system operating point

5. Finally, knowing the error is verror, and we can control θ gas (the control variable), we can select a control system.

verror

Controller

θ gas

 

 

 

 

L

 

θ gas

 

= Kc

Ki

+ Kds

 

 

------------

 

+ ----

 

 

verror

 

 

s

 

 

 

 

 

 

*The coefficients can be calculated using classical techniques, but they are more commonly approximated by trial and error.

Соседние файлы в предмете Электротехника