Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Mechatronics.pdf
Скачиваний:
81
Добавлен:
23.08.2013
Размер:
5.07 Mб
Скачать

page 105

Next we use a list of forward/inverse transforms to replace the terms in the partial fraction expansion.

 

f( t)

 

 

 

f( s)

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

A

 

 

 

 

 

 

--

 

 

 

 

 

 

 

 

s

 

 

 

At

 

 

 

A

 

 

 

 

 

 

----

 

 

 

 

 

 

 

 

s2

 

 

 

Ae

α t

 

 

 

A

 

 

 

 

 

 

 

-----------

 

 

 

 

 

 

 

 

s + α

 

 

 

A sin ( ω

t)

 

 

Aω

 

 

 

 

-----------------

 

 

 

 

 

 

 

s2 + ω 2

 

 

ξω

nt

 

2

ω

n

1 – ξ 2

for( ξ < 1)

e

sin ( ω nt

1 – ξ )

---------------------------------------

 

 

 

 

 

 

s2 + 2ξω ns + ω n2

 

 

etc.

To finish the problem, we simply convert each term of the partial fraction back to the time domain.

vactual =

99.9---------

+

---------------------0.264

---------------------1.16

 

s

 

s + 0.113

 

s + 0.877

vactual = 99.9 + 0.264e–0.113t – 1.16e–0.877t

7.1.5 System Response

page 106

There are two very common systems assumed - first and second order.

First order systems are very simple, as is shown below.

 

G( s)

A

A first order system, and a typical response to

 

= -----------

a stepped input.

 

 

s + B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

A second order system, and a typical response to

G( s)

a stepped input.

= ---------------------------------------

 

 

s2 + 2ξω ns + ω n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω n

ξ

Natural frequency of system, approximate frequency of control system oscillations.

Damping factor of system. If < 1 underdamped, and system will oscillate. If =1 critically damped. If < 1 overdamped, and never any oscillation (more like a first order system). As damping factor approaches 0, the first peak becomes infinite in height.

7.1.6 A Motor Control System Example

• Condsider the example of a DC servo motor controlled by a computer. The purpose of the con-

page 107

troller is to position the motor. The system below shows a reasonable control system arrangement. Some elements such as power supplies and commons for voltages are omitted for clarity.

 

 

 

2.2K

 

Computer Running Labview

1K

12Vdc motor

gain K

aquisitioncard

 

-

 

Instruments

+

 

 

 

 

 

 

 

 

 

 

LM675

 

X

 

 

op-amp

 

 

 

 

shafts are coupled

 

1200-PCI data

fromNational

 

-

 

 

 

 

 

 

+

 

 

 

 

 

 

 

+5V

-5V

 

 

 

 

5K potentiometer

desired position

 

 

 

 

voltage Vd

 

 

 

 

• This system can then be redrawn with a block diagram.

desired

 

 

 

 

 

position

 

 

 

 

 

voltage

+

gain K

op-amp

motor

shaft

Vd

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

potentiometer

 

• The block diagram can now be filled out with actual values for the components. Do this below.

page 108

Given values:

-desired potentiometer voltage

-gain

For the op-amp:

For the potentiometer:

- assume that the potentiometer has a range of 10 turns

For the motor:

- use the differential equation below

d

ω

K2

ω

 

K

 

----

-----

=

-----

Vs

dt

+ JR

JR

- use the speed curve below from rest when 10V is applied

1400 RPM

 

 

1s

2s

3s

For the shaft:

- it turns angular velocity into position

page 109

• Convert the block diagram into a transfer function for the entire system.

Соседние файлы в предмете Электротехника