Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilet_75-87.docx
Скачиваний:
52
Добавлен:
04.06.2015
Размер:
455.84 Кб
Скачать

Серое тело

тело, Поглощения коэффициент которого меньше 1 (коэффициент черноты С. т.) и не зависит от длины волны λ излучения. Коэффициент поглощения αλ, Т, всех реальных тел зависит от λ (их поглощение селективно), поэтому их можно считать серыми лишь в интервалах λ, где αλ, Т приблизительно постоянен. В видимой области спектра свойствами С. т. обладают уголь (αλ, Т = 0,80 при 125—625 °С), угольные нити ламп накаливания (αλ, Т = 0,526 при 1040—1405 °С), сажа (αλ, Т = 0,94—0,96 при 100—200 °С). Платиновая и висмутовая черни поглощают и излучают как С. т. в наиболее широком интервале λ — от видимого света до 25—30 мкм (αλ, Т = 0,93—0,99).

Билет 83.

Испускаемый источником свет уносит с собой энергию. Существует много различных механизмов подвода энергии к источнику света. В тех случаях, когда необходимая энергия сообщается нагреванием, т. е. подводом тепла, излучение называется тепловым или температурным. Этот вид излучения для физиков конца XIX века представлял особый интерес, так как в отличие от всех других видов люминесценции, тепловое излучение может находиться в состоянии термодинамического равновесия с нагретыми телами.

Изучая закономерности теплового излучения тел, физики надеялись установить взаимосвязь между термодинамикой и оптикой.

Если в замкнутую полость с зеркально отражающими стенками поместить несколько тел, нагретых до различной температуры, то, как показывает опыт, такая система с течением времени приходит в состояние теплового равновесия, при котором все тела приобретают одинаковую температуру. Тела обмениваются энергией только путем испускания и поглощения лучистой энергии. В состоянии равновесия процессы испускания и поглощения энергии каждым телом в среднем компенсируют друг друга, и в пространстве между телами плотность энергии излучения достигает определенного значения, зависящего только от установившейся температуры тел. Это излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или черным излучением. Плотность энергии равновесного излучения и его спектральный состав зависят только от температуры.

Если через малое отверстие заглянуть внутрь полости, в которой установилось термодинамическое равновесие между излучением и нагретыми телами, то глаз не различит очертаний тел и зафиксирует лишь однородное свечение всей полости в целом.

Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным. При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому задача сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту задачу классическая физика оказалась не в состоянии.

Для установления равновесия в полости необходимо, чтобы каждое тело испускало ровно столько лучистой энергии, сколько оно поглощает. Это одна из важнейших закономерностей теплового излучения. Отсюда следует, что при заданной температуре абсолютно черное тело испускает с поверхности единичной площади в единицу времени больше лучистой энергии, чем любое другое тело.

Рисунок 5.1.1.

Модель абсолютно черного тела

Абсолютно черных тел в природе не бывает. Хорошей моделью такого тела является небольшое отверстие в замкнутой полости (рис. 5.1.1). Свет, падающий через отверстие внутрь полости, после многочисленных отражений будет практически полностью поглощен стенками, и снаружи отверстие будет казаться совершенно черным. Но если полость нагрета до определенной температуры T, и внутри установилось тепловое равновесие, то собственное излучение полости, выходящее через отверстие, будет излучением абсолютно черного тела. Именно таким образом во всех экспериментах по исследованию теплового излучения моделируется абсолютно черное тело.

С увеличением температуры внутри полости будет возрастать энергия выходящего из отверстия излучения и изменяться его спектральный состав.

Распределение энергии по длинам волн в излучении абсолютно черного тела при заданной температуре T характеризуется излучательной способностью r (λ, T), равной мощности излучения с единицы поверхности тела в единичном интервале длин волн. Произведение r (λ, T) Δλ равно мощности излучения, испускаемого единичной площадкой поверхности по всем направлениям в интервале Δλ длин волн. Аналогично можно ввести распределение энергии по частотам r (ν, T). Функцию r (λ, T) (или r (ν, T)) часто называют спектральной светимостью, а полный поток R (T) излучения всех длин волн, равный

называют интегральной светимостью тела.

К концу XIX века излучение абсолютно черного тела было хорошо изучено экспериментально.

В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость R (T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T:

R (T) = σT4.

Несколько позднее, в 1884 году, Л. Больцман вывел эту зависимость теоретически, исходя из термодинамических соображений. Этот закон получил название закона Стефана–Больцмана. Числовое значение постоянной σ, по современным измерениям, составляет

σ = 5,671·10–8 Вт / (м2 · К4).

Рисунок 5.1.2.

Спектральное распределение r (λ, T) излучения черного тела при различных температурах

К концу 90-х годов XIX века были выполнены тщательные экспериментальные измерения спектрального распределения излучения абсолютно черного тела, которые показали, что при каждом значении температуры T зависимость r (λ, T) имеет ярко выраженный максимум (рис. 5.1.2). С увеличением температуры максимум смещается в область коротких длин волн, причем произведение температуры T на длину волны λm, соответствующую максимуму, остается постоянным:

λmT = b   или   λm = b / T.

Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина: длина волны λm, на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T. Значение постоянной Вина

b = 2,898·10–3 м·К.

При практически достижимых в лабораторных условиях температурах максимум излучательной способности r (λ, T) лежит в инфракрасной области. Только при T ≥ 5·103 К максимум попадает в видимую область спектра. Максимум энергии излучения Солнца приходится примерно на 470 нм (зеленая область спектра), что соответствует температуре наружных слоев Солнца около 6200 К (если рассматривать Солнце как абсолютно черное тело).

Планк пришел к выводу, что процессы излучения и поглощения электромагнитной энергии нагретым телом происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света:

E = hν,

где h – так называемая постоянная Планка. h = 6,626·10–34 Дж·с. Постоянная Планка – это универсальная константа, которая в квантовой физике играет ту же роль, что и скорость света в СТО.

На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.

Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.

Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При hν << kT формула Планка переходит в формулу Релея–Джинса.

Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики.

Билет 83.

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями — квантами (или фотонами). Энергия каждого фотона определяется формулой , где — постоянная Планка, равная , — частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого и 1887 г. немецким ученым Генрихом Герцем и изученного экспириментально русским ученым Александром Григорьевичем Столетовым.

Фотоэффект — это явление испускания электронов веществом под действием света. Если зарядить цинковую пластину, присоединенную к электрометру, отрицательно и освещать ее электрической дутой (рис. 35), то электрометр быстро разрядится.

В результате исследований были установлены следующие эмпирические закономерности:

— количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны;

— максимальная кинетическая энергия фото электронов линейно возрастает с частотой света и н зависит от его интенсивности.

Кроме того, были установлены два фундаменталь ных свойства.

Во-первых, безынерционность фотоэффекта: процесс начинается сразу в момент начала освещения.

Во-вторых, наличие характерной для каждого металла минимальной частоты красной границы фотоэффекта. Эта частота такова, что при фотоэффект не происходит при любой энергии света а если , то фотоэффект начинается даже при малой энергии.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергии . При вылете из металла энергия каждого электро на уменьшается на определенную величину, котору называют работой выхода). Работа выхода это работа, которую необходимо затратить, чтобы удалить электрон из металла. Поэтому максимальная кинетическая энергия электронов после вылета (если нет других потерь) равна: . Следовательно,

.

Это уравнение носит название уравнения Эйнштейна.

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, и которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]